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Abstract

The most common way of separating homophony from syncretism – which is a basic challenge for any
inflectional analysis: to distinguish between accidental and systematic form-identity – is attributing only
the latter to a coherent feature combination instantiating a natural class. Features predetermine which
form-identities can or cannot be analyzed as natural-class syncretism. Hence, they are crucial for the
restrictiveness and predictions of morphological grammar. However, most current theoretical frameworks
(e.g. Anderson 1992, Corbett and Fraser 1993, Halle and Marantz 1993, Stump 2001) do not make explicit
their assumptions regarding the formal status of features. They miss out on state-of-the-art formalisms
to introduce feature notations like Formal Concept Analysis (FCA, going back to Wille 1982, Ganter and
Wille 1999) which provides a formal model of conceptualization in general. In this paper, I will show how
FCA provides an all-embracing terminology to reproduce, visualize, and compare feature systems from
different morphological frameworks, enables more precise and consistent morphological analyses, and
crucially serves to rule out excessively powerful notations where the feature combinatorics are decoupled
from the distributional facts they represent.

1. Introduction

One of the core problems of morphological analysis is the question whether different occurrences of the
same inflectional marker – e.g., a suffixed form – are just accidentally identical homophones or actually
instances of the same syncretic morpheme. Whenever different occurrences of a form stand out by a con-
sistent set of common morphosyntactic features, they are usually analyzed as being syncretic:1 There is
only one underlying lexical entry for them – for the native speaker they are indistinguishable. Consider the
verbal tense and agreement suffixes in (1).2 The six occurrences of the -te suffix are uniquely identified
by the property of being past tense and therefore a canonical example of syncretism originating from an
underspecified lexical element, i.e. filling multiple paradigm cells that are both necessarily and sufficiently
described by a common feature specification:3

(1) Present and past tense forms of German spielen ‘to play’

SG PL

1 spiel-e spiel-(e)n
2 spiel-st spiel-t
3 spiel-t spiel-(e)n

PRESENT

SG PL

1 spiel-te spiel-te-n
2 spiel-te-st spiel-te-t
3 spiel-te spiel-te-n

PAST

In other words, the six environments with -te constitute a natural class. Formally, this is represented by the
well-formedness of a corresponding feature specification, say [PAST]. For the distinction between natural-
class-syncretism and homophony, it is thus essential what features exactly are available – and also which
of their combinations: If, for example, the feature ‘−HEARER’ is provided, then the four occurrences of
-n can be analyzed as being a natural-class syncretism. They can stem from a single lexical item with a
meaning using this feature: [−HEARER +PL]. It has, however, been argued empirically that there is no

1Note that the converse is not necessarily true: Morphological frameworks often characterize additional types of systematic form-
identity by the means of extra formal machinery like impoverishment rules (Halle 1997) or rules rules of referral (Zwicky 1985).

2See Section 4 for a discussion of the concrete analysis of these data in Müller (2006).
3Although an anonymous reviewer demands a more restricted usage of the term underspecification by which -te might also be

called fully-specified as long as it is analyzed to fill an ‘only tense slot’.
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such ‘non-hearer’ feature because the kind of person syncretism this would allow – spanning the first and
the third person excluding the second person – is actually comparatively rare in the languages of the world
(e.g. Zwicky 1985, Harley and Ritter 2002, Harbour 2006). Having a richer set of morphological features
incorporating −HEARER fails to explain this rareness while the more restricted inventory allows one to
predict it. For the empirical progress of morphological models, it is thus required to keep the feature set
inventory and the natural classes that unfold from their combinatorics in line with typological observations
on the frequency and rarity of syncretism types in natural languages (Cysouw 2010). As this is in fact a
rather biased distribution (apart from some common types, many of the logically possible combinations are
rare, cf. e.g. Pertsova 2007, Sauerland and Bobaljik 2013), this modeling demands feature parsimony.4

In general, morphological analyses follow these considerations by giving at least a brief description of
their inventory of features and their foundation – for example, a semantic or syntactic background. Usually,
it is taken for granted that the reader can infer their combination rules by declaring them to be similar to
those of ordinary sets – referring to them as ‘feature sets’ or feature specifications.5 However, there are
still two different ways to understand a set-like algebra of features: Either collections of features are just
sets of symbols which by themselves are meaningless or they are abbreviations for the sets of linguistic
objects that they refer to. While this may appear to be a subtle difference at first glance, it may have radical
consequences on the expressive power of feature notations and what types of form-identity are therefore
representable as syncretism. For lack of terminology, I will call the former feature autonomy and the latter
extensionalism. Consider, for example, the feature inventory in (2), as used for Sierra Popoluca by Müller
(2006). Although it is almost minimal (3 binary features providing 2×2×2= 8 combinations for 7 different
objects to describe), there is a logical dependence in the feature inventory as defined: As the paradigm lacks
an inclusive-singular cell, +1 and +2 together entail +pl (inclusiveness entails plurality).6 Therefore, there
are two different feature notations for the 1INCL pronominal context, viz. [+1+2] and [+1+2+pl]. The
question of feature autonomy vs. extensionalsm is simply whether these two notations are effectively the
same or not. In other words, can grammar differentiate them? Within extensionalism, they are the same
if and only if they pick out the same set of paradigm cells (which is true in (2) and gets false once e.g. a
[+1+2+du] inclusive dual cell is added). With feature autonomy, they are different exactly because they
contain different feature symbols, i.e. regardless of what the paradigm looks like and regardless of which
cells they eventually pick out.

(2) Binary feature decomposition for pronominal elements with clusivity

1EXCL 1INCL 2 3
SG +1−2−pl • −1+2−pl −1−2−pl
PL +1−2+pl +1+2+pl −1+2+pl −1−2+pl

The difference between the two views increases, as feature systems depart more from their combinatorial
minimum.7 Consider, for example (3), which adds a binary ±3 feature, such that +3 subsumes the third
person cells (adding just a shorthand for −1−2) and −3 allows to refer to all cells involving a speech-act-
participant.8

4Such empirical requirements for positing features preclude stipulating for arbitrary paradigm cells to form a natural class, e.g.
subsuming the 3SG and 2PL -t occurrences under an ad-hoc feature.

5 A notable exception are analyzes within frameworks with more emphasis on implementability like GPSG (Gazdar et al. 1985)
and HPSG (Pollard and Sag 1994). See Petersen and Kilbury (2005) on the close connection between their feature structure notations
and Formal Concept Analysis.

6Because the binary values of each feature in (2) are complementary the following are equivalent: +1 and +2 together entail −pl.
+1 and −pl together entail −2. +2 and −pl together entail −1.

7Observe that with binary features, a feature system describing a set of objects whose number does not happen to be a power of
two will always be non-minimal, i.e. have notational variants.

8Note that irrespective of the labeling (+3 = −PARTICIPANT; −3 = +PARTICIPANT), third person inherently refers to complete
absence of speech act participants. This is why 1INCL contexts can, 1EXCL.PL and 2PL must involve a non-participant ‘although’
they are subsumed by a −3 label.
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(3) Extended binary feature decomposition

1EXCL 1INCL 2 3
SG +1−2−3−pl • −1+2−3−pl −1−2+3−pl
PL +1−2−3+pl +1+2−3+pl −1+2−3+pl −1−2+3+pl

Adding more general features creates more natural classes to be captured by the feature system. At the same
time it adds logical interdependencies between the features (excluding certain combinatorial possibilities):
In (3), additionally, +1 entails −3, −1−2 is equivalent with +3, +1 is incompatible with +3, etc. Due
to those relations, there are again different ways to notate one and the same set of pronominal contexts:
Different sets of symbols (e.g. [+1] and [+1−3]) refer to the same set of linguistic objects (the paradigm
cells 1EXCL.SG, 1EXCL.PL, 1INCL). While these are interchangeable notational variants in an extension-
alistic feature algebra, the notations are actually differentiated in an autonomous model. Morphological
grammar can exploit this to treat them differently although they are referentially identical (an example from
the literature will be discussed later).

So whenever the feature inventory provides different ways to refer to the same set of objects, the
two kinds of feature algebra will be different. As demonstrated in (4), they give contradicting relations
between non-maximally specified feature sets (equivalence, set containment) and yield different results for
the operations that combine them (intersection, union):9

(4) Disagreement between two possible kinds of feature algebra

feature autonomy feature extensionalism
a. [+3] 6= [−1−2] [+3] = [−1−2]
b. [−1] 6v [+3] [−1]v [+3]
c. [+1]u [+3] = /0 [+1]u [+3] = [−2]
d. [+1]t [−1] 6= [+2]t [−2] [+1]t [−1] = [+2]t [−2]

As soon as there are dependencies inside the feature inventory – one feature value being logically dependent
on the presence or absence of others –, its autonomous feature algebra will contain extra notations that
boost its expressive power in comparison to the more restricted extensionalistic one. As I will argue in
this paper, this extra power undermines the restrictiveness of morphological grammar and also challenges
its learnability: Feature autonomy introduces analytical ambiguity for cases usually analyzed as involving
extended exponence or impoverishment, resulting in less specific empirical predictions. As long as the
predictions that follow from the more restrictive feature model have not been falsified, there is no reason
to use the less restrictive autonomous model. Furthermore, the learnability of choices between feature
specifications that are referentially identical but only discernible from their grammatical side-effects are at
least questionable.

This paper is structured as follows: The next section will briefly look over the most widely used
feature notations used in morphological grammar and discuss their significance for representing patterns of
natural-class syncretism. The third section will give an informal introduction into Formal Concept Analysis
(FCA, Wille 1982, Ganter and Wille 1999), which is a fully worked out model of extensionalistic feature
algebra that was developed as a practical application of mathematical order and lattice theory (Birkhoff
1940). FCA can be viewed as a formalized description of conceptualization in general – whenever con-
ceptualization means needing to define clear-cut categories of objects in terms of their shared properties.
In other words, most of the feature systems used in morphology and phonology can straightforwardly be
translated into FCA.10 Crucially, the model provides the terminology to identify the use of feature autonomy
in morphological (or other) analyses. Finally, I will reveal some of the unwanted effects that autonomous
feature algebras may have for morphological grammar and argue in favor of their renouncement.

9In this paper, I will use square symbols (v, u, t) for feature set operators to distinguish them from operators for the cor-
responding object sets (⊆, ∩, ∪). Note the correspondence between their mirror-images, e.g. [+1] v [+1 + 2] is equivalent to
{1EXCL.SG,1EXCL.PL,1INCL} ⊇ {1INCL}.

10See Petersen (2008) for an application of FCA to phonology.
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2. Feature notations in morphological grammar

In morphology, there are two basic flavors of feature notations: feature-value pairs as used in Paradigm
Function Morphology (PFM, Stump 2001) and Network Morphology (NM, Corbett and Fraser 1993) and
binary and/or privative features as used in A-Morphous Morphology (AM, Anderson 1992) as well as
Distributed Morphology (DM, Halle and Marantz 1993). 11 I will refer to them as morphosyntactic feature
specifications. In inflectional analysis such feature specifications fulfill two functions: Firstly, they provide
a formal representation for the meaning of each individual paradigm cell. Secondly, they define which sets
of paradigm cells correspond to more general meanings, i.e., are natural classes.

In the following, I will give a short usage-example of each of the feature notations, following matching
examples in each framework’s literature as close as possible. Each example will build a feature system
for the seven-cell pronominal paradigm from the introduction pointing out potential drawbacks – notably
regarding natural classes and the issue of notational variants. At the end of Section 3, all of them will be
reimplemented in FCA making their differences explicit in a precise way.

2.1. Feature-value pairs

PFM-style feature-value notations are created by partitioning all available property descriptions into mu-
tually exclusive groups and assigning these groups (‘features’ consisting of possible ‘values’) a category
name (cf. Stump 2001:39, 88):

(5) Morphosyntactic features with permissible values
a. PER 1, 2, 3 c. NUM sg, pl
b. INCL yes, no d. GEN masc, fem, neut

Individual feature specifications are sets of ‘CATEGORY:value’ pairs drawn from such an inventory, for
example:

(6) Morphosyntactic feature specifications as feature-value pairs
a. {PER:1, NUM:sg} c. {PER:3, NUM:sg, GEN:neut}
b. {NUM:pl} d. {}

Each category needs to be paired with no more than a single value (specifications are partial functions from
categories to values) and a value cannot be paired with a category it does not belong to. Hence the following
notations are undefined:

(7) Ill-formed feature specifications
a. *{PER:1, PER:2} (not a partial function)
b. *{NUM:masc} (category-value mismatch)

In other words, by assumption all values from a category are always incompatible with each other (they are
nominal scales) and all values from different categories are compatible with each other by default (they are
logically independent/orthogonal).

In an ideally symmetrical world, these two assumptions would always hold and all paradigms could
be represented as n-ary rectangles. In reality, however, features of different kinds occasionally interact:
For example, gender or obviation may only be combinable with third person – or first person inclusive
incompatible with singular number. In these cases the default assumption of logical independence is too
lax. It can be overridden by adding specific well-formedness conditions:

11For an FCA view on GPSG and HPSG feature notations, see Petersen and Kilbury (2005).
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(8) Feature-value cooccurrence restrictions for non-orthogonal categories
a. σ w {PER:1} ∨ σ w {PER:2} −→ σ 6w {GEN:α}

where α ∈ {masc,gen,neut}
b. σ w {PER:1, INCL:yes} −→ σ w {NUM:pl}

The statement in (8a) bans specifications containing first or second person features also having a gender
value. (8b) can be thought of as a rewrite rule adding the entailed plural value to specifications containing
first person inclusive. While such rule systems can become difficult to create and verify (cf. the complex rule
set for Potawatomi in Stump 2001:88f), they eliminate notational variants (provided all interdependencies
are covered) and serve to override default orthogonality.

In cases, however, where reality does not seem to comply with the strong assumption of mutual exclu-
sivity, definition gets cumbersome: Feature-value-pairs ban a person notation where first and second person
can simply be combined to represent first person inclusive (7a).12 Instead, clusivity needs to be represented
by another feature category. Stump (2001) chooses the yes/no feature INCL (e.g. for Potawatomi), which of
course needs to be interacting heavily with the three ‘primary’ person features PER and the number features.
So this requires adding more cooccurrence restrictions (undermining again the orthogonality ideal):

(9) Additional cooccurrence restrictions to implement clusivity
a. σ w {PER:2} −→ σ w {INCL:yes}
b. σ w {PER:1, NUM:sg} ∨ σ w {PER:3} −→ σ w {INCL:no}

Counting disjunction as rule duplication, the PFM-notation needs as much as four rules to state that the
feature representation for the basic paradigm cells are as given in (10).13

(10) Feature specifications for pronominal elements with clusivity

1EXCL 1INCL 2 3
SG PER:1 INCL:no NUM:sg • PER:2 INCL:yes NUM:sg PER:3 INCL:no NUM:sg
PL PER:1 INCL:no NUM:pl PER:1 INCL:yes NUM:pl PER:2 INCL:yes NUM:pl PER:3 INCL:no NUM:pl

This makes it somewhat less straightforward to add more general features to represent paradigm cells that
comprise natural classes: For example, a feature that picks out cells involving speech act participants can-
not be defined as a person feature because of mutual exclusivity. It needs to be defined a feature of its own
category, which due to the default orthogonality demands more cooccurrence rules to represent the depen-
dencies. While this is perfectly possible technically, the rule set will get more complex with every feature
and the category division less meaningful.14

2.2. Ordered attribute paths

In Network Morphology the meanings of the individual paradigm cells and markers are represented by
DATR path expressions (Evans and Gazdar 1996), which consist of feature-value pairs just as defined above
(mutually exclusive values of orthogonal features). Instead of sets, the path expressions are sequences:
By assumption, they impose the additional constraint on feature values to comply with a predefined total
ordering of morphosyntactic categories.15 Feature systems are created by dividing all available attribute

12Following Gazdar et al. (1985), Stump (2001) also allows for set-valued as opposed to the atom-valued features used for person
and number: With person values as a set of features, first person inclusive can in principle be modeled within the PFM-notation as
{PER:{1:yes, 2:yes}}. However, Stump (2001) does not seem to consider set-valued features for categories like person and number.

13One may also object that the second person value really refers to a second person exclusive distribution while the inclusive feature
bears the second person distribution.

14The natural endpoint of such decomposition is a system where each value is a feature of its own (with just one value) or features
have two complementary values, viz. privative/binary features.

15With KATR (Finkel et al. 2002), there is also a variant of DATR in which the path expressions are unordered so that the ordering-
assumption is not needed technically. Brown and Hippisley (2012:57–64) however clarify that the ordering of features is to be regarded
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outcomes into an ordered partition of mutually exclusive values (cf. Brown and Hippisley 2012:182):

(11) Template for PER ≺ NUM ≺ GEN feature-value path expressions〈 1st
1st_excl sg masc
1st_incl pl fem
2nd neut
3rd

〉

Path expressions are constructed by following the template strictly from left to right with the option of
omitting values only at the end of the expression, for example:

(12) Morphosyntactic feature specifications as path expressions
a. <1st sg> c. <3rd sg neut>
b. <1st> d. <>

In other words, paths have to be initial substrings of the template. Hence the following paths are undefined
given the order in (11):

(13) Ill-formed path expressions
a. *<pl> b. *<masc> c. *<3rd masc> d. *<1st 2nd>

Each paradigm cell can be represented by a fully specified path expression:

(14) Feature specifications for pronominal elements with clusivity

1EXCL 1INCL 2 3
SG 1st sg • 2nd sg 3rd sg
PL 1st_excl pl 1st_incl pl 2nd pl 3rd pl

For the lack of a device similar to cooccurrence restrictions, the resulting feature systems contain notational
variants in case of feature interdependencies, e.g. <1st_incl> and <1st_incl pl>. These may be exploited
to treat them differently.

When it comes to the use of more general features to represent natural classes, this notation is very
restricted. As exemplified by (13a), it is not possible to refer to all plural cells as a natural class as long as
the person features are ordered before number. To refer to all three first person cells, one needs to add a slot
for that particular feature ordered to the left of the more specific person features. However, if one also wants
to refer to the cells involving the hearer these two new features – not being mutually exclusive – would need
to be ordered with regard to each other resulting in only one of them being usable in path expressions to
refer to the corresponding cells. Due to these limitations, natural classes are sometimes expressed with the
help of DATR variables over feature values – similar to α-notation:

(15) Path expression to denote all plural cells using variables
#vars $person: 1st 1st_excl 1st_incl 2nd 3rd
<$person pl>

Note that the inclusion of such a variable notation in principle makes the notation completely unrestrictive
– it makes it possible to express each and every combination of paradigm cells. In other words, if variable
notation is not restricted somehow, path expressions no longer serve to distinguishes natural from unnatural
classes.

an inherent restriction of the framework rather than a limitation of the notation.
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2.3. Binary and privative feature sets

In A-Morphous Morphology and Distributed Morphology feature systems are usually defined by decom-
posing the attribute outcomes for each grammatical category into a combination of more general binary or
privative features, e.g.:

(16) Decompositions of person, number, and gender values
1EXCL = +1−2
1INCL = +1+2
2 = −1+2
3 = −1−2

SG = −pl
PL = +pl

MASC = masc
FEM = fem
NEUT = neut

or MASC = +m−f
FEM = −m+f
NEUT = −m−f

Like feature-value pairs, binary features employ a distinction between ‘features’, for example ‘1’ (speaker)
and ‘2’ (hearer) and their two mutually exclusive ‘values’, viz. ‘+’ and ‘−’. Privative features on the
other hand fulfill the role of the feature and its singleton value at the same time and therefore suspend the
distinction. While each binary features introduces a three-way contrast (+, −, and unvalued), privative
features only distinguish between their presence and absence.

Which combinations can be regarded as natural classes depends on the exact decomposition. For
example if three genders are decomposed into the privative features masc, fem, neut from (16), the mascu-
line, feminine and neuter cells can be referred to directly but no gender combination is regarded a potential
natural class. If, on the other hand, they are decomposed into the binary features ±m, ±f from (16),
{MASC,NEUT} and {FEM,NEUT} are possible natural class gender groupings (−f and −m).

As long as the decomposed attribute outcomes are not freely combinable, it is usually necessary to
give the exact feature combination for each of the possible combinations, i.e. each paradigm cell.16 Consider
for example (17) as used e.g. in Müller (2006), repeated from (2):

(17) Feature specifications for pronominal elements with clusivity

1EXCL 1INCL 2 3
SG +1−2−pl • −1+2−pl −1−2−pl
PL +1−2+pl +1+2+pl −1+2+pl −1−2+pl

Enumerating the fully specified feature notation for each paradigm cell allows one to infer some implicit
well-formedness conditions.17 All feature sets that are no subset of any of the full notations refer to no cell
at all and are therefore contradictions:

(18) Contradicting feature specifications subsuming no cell
a. [+1−1+2−2] b. [+1+2−pl] c. [+pl−pl]

However, without explicit statement it is not clear if these expressions are generally excluded and if they are
equivalent or not: While feature sets with conflicting binary features like (18a) and (18c) can most-likely be
assumed invalid, the case is not so obvious with combinations like (18b).18 Due to the lack of completely
spelled-out cooccurrence restrictions it is usually ambiguous, whether notational variants like [+1+2] and

16Consider a paradigm where obviative is not combinable with first and second person: These cells could be thought of as [+prox],
[−obv], or unspecified. In case of dependencies, binary feature pairs may not be complementary, e.g. when [−masc] does not include
first and second person, i.e. is restricted to non-masculine third person contexts.

17For a more explicit approach, see e.g. the feature-geometries used in Harley and Ritter (2002). Note that under extensionalist
assumptions (i.e. notational variants are not differentiated), defining a feature system in terms of an exhaustive set of restrictions
(logical dependencies) or by giving the full specification of each paradigm cell is completely equivalent (although the latter might be
less error-prone). Crucially, FCA provides algorithms to translate between them.

18Note that the validity of a feature specification [+1+2−pl] ultimately depends on whether number in the language under consid-
eration is analyzed to be of the minimal/augmented or singular/plural type. Given this, an analysis might link special behavior to the
expression in languages where the combination is impossible (in the sense as it is interpreted as not-surfacing).
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[+1+2+pl] are to be treated equivalently (extensionalism) or can have the potential to behave differently
in morphological grammar (autonomy).

3. Formal Concept Analysis

In what I called the extensionalistic view, feature notations are abbreviations for sets of objects (pronominal
contexts, phonemes, etc.). Accordingly, each feature system provides two things: The definition of a set of
well-formed expressions and a procedure to translate these expressions into the set of objects they represent.
This has two advantages over directly listing sets of objects: Firstly, feature notation promotes brevity by
being able to refer to large (potentially infinite) sets of objects just by writing down their common features.
Secondly, feature notation may restrict the sets of objects that can directly be referred to, such that for some
object combination there is no corresponding expression.

Consider a domain of three objects. There are 23 = 8 different ways of combining them into (un-
ordered) sets. Set inclusion arranges them into the hierarchy in Figure 1 where an edge indicates that the
upper node is a superset of the lower one.

{}

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Figure 1: Hasse diagram of the powerset of {1,2,3}

As this boolean lattice already contains all possible combinations, a feature system – in the extensionalistic
view – cannot be more fine-grained than this. Feature systems that spare expressions for some of the
combinations are restrictive in the sense that not every combination is a natural class. For example, a
feature system that lacks a direct notation for the set {1,3}, while {1,2} and {2,3} are regarded as natural
classes provides the impoverished lattice on the left side of Figure 2. Finally, a feature system that only
allows to refer to each individual object or all of them is isomorphic to the lattice on the right.

{}

{1} {2} {3}

{1,2} {2,3}

{1,2,3}

{}

{1} {2} {3}

{1,2,3}

Figure 2: Hasse diagrams of reduced subsets of {1,2,3}
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Formal Concept Analysis (FCA) basically determines which of these kinds of subset hierarchies follow
from exactly which feature inventory definition: What kinds of subsets are expressible given an inventory
of features and which inventory of features is needed to express a given set of distinctions?19

3.1. Formal contexts, derivation, and formal concepts

FCA examines the connection between a set of objects (O) to be referred to and a set of attributes (A) that
describe them. The connection is established by a cross-table called formal context. It defines the binary
relation between both sets (R⊆O×A), i.e. which objects has which attribute and vice versa. The context
in (19) follows the extended binary feature decomposition of the pronominal paradigm in (3):

(19) Formal context relating 7 objects with 8 attributes

+1 –1 +2 –2 +3 –3 –pl
+pl

1EXCL.SG × × × ×
1EXCL.PL × × × ×
1INCL.PL × × × ×
2SG × × × ×
2PL × × × ×
3SG × × × ×
3PL × × × ×

Attributes can be regarded as boolean flags that each object either has (×) or doesn’t – like privative features.
Many-valued attributes like binary features or nominal scales need to be translated into flags, which is called
conceptual scaling. With the resulting table one can do two things: Determine the common attributes O′

for a set of objects (O ⊆ O) and the common objects A′ for a set of attributes (A ⊆ A). These derivation
operations are usually notated with the same symbol, the prime (′):

(20) The derivation operator ′ yielding common attributes/objects
a. O′ of O⊆O := {a ∈ A | ∀o ∈ O : 〈o,a〉 ∈ R} (common attributes)
b. A′ of A⊆A := {o ∈ O | ∀a ∈ A : 〈o,a〉 ∈ R} (common objects)

With the relation in (19), for example, {1EXCL.SG,1INCL.PL}′ = {+1,−3} and {1EXCL.SG,2.PL}′ =
{−3}. Furthermore {+1,+2}′ = {1INCL.PL} and {−1,+3}′ = {3SG,3PL}.20 Observe that the derivation
of an empty set /0′ yields all attributes A applying (20a) and all objects O applying (20b).

Recall that due to the interdependencies of the attributes in (19) there are different ways to derive the
same set of objects, e.g. {+1,+2}′ = {1INCL.PL} and {+1,+2,+pl}′ = {1INCL.PL}. However, when the
derived extent is derived again, it yields the maximal set of features that derive it, its intent which crucially
is unique: {1INCL.PL}′ = {+1,+2,−3,+pl} and {+1,+2,−3,+pl}′ = {1INCL.PL}. Such a pair of extent
and intent where the the objects have exactly the features in common and the attributes correspond exactly
to the objects is called a formal concept:

(21) Formal concept as pair of extent and intent

〈O,A〉 with O′ = A and A′ = O

19Together with this paper I also release concepts, an open-source FCA implementation written in Python and features, an
FCA-based feature set algebra for linguistics. They are available from the Python Package Index (PyPI), see http://pypi.python.
org/pypi/concepts and http://pypi.python.org/pypi/features.

20Note that in the selected cases, applying the derivation once more to the result on the right side does not get back
the initially derived set on the left-hand side of the equation: {+1,−3}′ = {1EXCL.SG,1EXCL.PL,1INCL.PL} and {−3}′ =
{1EXCL.SG,1EXCL.PL,1INCL.PL,2SG,2PL}. Furthermore {1INCL.PL}′ = {+1,+2,−3,+pl} and {3SG,3PL}′ = {−1,−2,+3}.
However, it is always a superset. Those pairs where double-derivation returns the original value are formal concepts.
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The simplest way to get them is to generate all pairs {〈O′′,O′〉 |O⊆O} or equivalently {〈A′,A′′〉 | A⊆A}.
In the context table, they correspond to maximal rectangles of crosses that can be formed by reordering the
rows and the columns. Hence there is a formal concept in (19) covering the {1EXCL.SG,2SG} cells with the
features {−3,−pl}, which form a square if the 2SG row is moved to the top. On the other hand, there is no
such concept for {1EXCL.SG,2PL} as their shared feature set {−3} derives {1EXCL.SG,1EXCL.PL,1INCL.PL,2SG,2PL}.
There is a concept having exactly the features {+1,−2,−3} corresponding to the cells {1EXCL.SG,1EXCL.PL}.
Yet, there is no such concept for {+1,−1} because its empty extent /0 is also the extent of any other incom-
patible features, e.g. {+1,+3}.

3.2. Concept lattices

When all concepts are identified, they form a hierarchy of superconcepts and subconcepts: the concept
lattice of the formal context. Figure 3 gives the lattice for the concepts in the formal context in (19).

2SG3PL1SG3SG 1EX.PL 2PL 1IN.PL

+3

−1−2−pl +1 +2

+pl −3

Figure 3: Lattice of 27 concepts for pronominal elements with clusivity

Each node represents a concept subsuming all lower concepts that it directly or indirectly dominates by an
edge. The extent of a node is retrieved by following all downward edges collecting the labels below all
visited nodes. The intent is retrieved by collecting the labels above nodes following upward edges. For
example, the bottom concept, which corresponds to all contradicting attributes, is the 〈extent, intent〉 pair in
(22a). Going upward from there at the right edge of the lattice visits the increasingly general concepts in
(22b-e) up to the most general top concept (22f).

(22) Implicational hierarchy of formal concepts (a < b < c < d < e < f)
a. 〈 /0,{+1,−1,+2,−2,+3,−3,−pl,+pl}〉 infimum, ⊥
b. 〈{1IN.PL},{+1,+2,−3,+pl}〉 atom
c. 〈{1IN.PL,2PL},{+2,−3,+pl}〉
d. 〈{1EX.PL,1IN.PL,2PL},{−3,+pl}〉
e. 〈{1SG,2SG,1EX.PL,1IN.PL,2PL},{−3}〉 coatom
f. 〈{1SG,2SG,1EX.PL,1IN.PL,2PL,3SG,3PL}, /0〉 supremum, >

Crucially, the ordering of the lattice is identical to the set inclusion between both the object sets as well as
the attribute sets of its nodes:
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(23) Partial ordering ≤ between formal concepts

〈O1,A1〉 ≤ 〈O2,A2〉 if and only if O1 ⊆ O2 or equivalently A1 ⊇ A2

Therefore the lattice has exactly the same hierarchical structure as the directed graphs from Figures 1 and
2 – meeting the extensionalistic requirements: It is an inclusion hierarchy of possible subsets from a fixed
domain of objects. Regardless of the number of attributes it can never have more distinctions than there
are subsets in the domain. Each set of objects is paired with an attribute set such that object and attribute
set operations can be substituted equivalently for each other. Finally, the derivation operator substitutes
notational variants with the same set of objects or attributes which never behave differently. A provisional
way to avoid feature autonomy is therefore to always use the most specific notational variant for all feature
specifications (applying double derivation ′′ to them)

3.3. Feature algebra with concept lattices

Once the concept lattice is generated, the combinatorics of its members follow from their lattice position.
The lattice provides two basic operations: join (∨) and meet (∧). The join (generalization) yields the
closest concept subsuming all joined ones, which is the concept derived from their extent union and intent
intersection:

(24) Join [+1−pl]∨ [+1+2+pl] = [+1]
extent: ({1SG}∪{1IN.PL})′′ = {1SG,1EX.PL,1IN.PL}
intent: ({+1,−2,−3,−pl}∩{+1,+2,−3,+pl})′′ = {+1,−3}

The meet (unification) yield the closest concept implying all met ones, which is the concept derived from
their extent intersection and intent union:

(25) Meet [+1]∧ [−pl] = [+1−pl]
extent: ({1SG,1EX.PL,1IN.PL}∩{1SG,2SG,3SG})′′ = {1SG}
intent: ({+1,−2,−3}∪{−pl})′′ = {+1,−2,−3,−pl}

Two concepts are incompatible if their meet is the bottom concept (contradiction): [+1]∧ [+3] = ⊥. Two
concepts are complementary if moreover their join is the top concept (tautology): [−pl]∨ [+pl] =>. If two
concepts are compatible and their join is the top concept, they are subcontrary: [−1]∨ [−3] =>. A concept
subsumes another one if there is a downward path from the former to the latter, i.e. the former is their join
and the latter their meet: [−3]∨ [+1] = [−3]. If none of these relations hold between two concepts, they are
orthogonal, e.g. [+1] and [+2] in (19) and the corresponding lattice.21

3.4. Examples

To illustrate that Formal Concept Analysis is not another feature notation but a general model of describing
and analyzing extensionalistic feature notations of all kinds, I will implement the feature notations from
Section 2 in FCA.

The following table contains the PFM-style feature-value-pair inventory summarized by the paradigm
in (10) translated into a formal context. Crucially, all information is preserved:

21Note that these statements presuppose that the bottom concept has an empty extent, i.e. there is no object in the formal context
that has every attribute.
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(26) Formal context relating 7 objects with 7 attributes

PER:1
PER:2

PER:3
IN

CL:yes

IN
CL:no

NUM:sg

NUM:pl

1EXCL.SG × × ×
1EXCL.PL × × ×
1INCL.PL × × ×
2SG × × ×
2PL × × ×
3SG × × ×
3PL × × ×

Mutual exclusivity holds between feature-values that have no common object. Feature-value groupings and
cooccurrence restrictions do not need to be stated separately. They are simply table patterns, e.g. that PER:2
entails INCL:yes. The same can be read from the corresponding concept lattice, which is given in Figure 4.22

2SG1IN.PL1EX.PL1SG 2PL 3SG 3PL

PER:2 PER:3

PER:1 INCL:no NUM:pl INCL:yes NUM:sg

Figure 4: Lattice of 21 concepts for pronominal elements with clusivity

The next table translates the DATR ordered attribute path expressions summarized by (14) into a
formal context. As the relation illustrates, it is essentially a nominal scale referring to each paradigm
cell plus two more general person features. Observe that the high specificity of the attributes in the table
directly follows from the implemented ordered path notation being able to refer to exactly 1) to 10): 1) to
7) each individual cell, 8) second person exclusive, 9) third person, 10) all cells. Together with the emty-set
denoting bottom element, this makes exactly 11 concepts.

22To facilitate comparison, the node-placement of the graphs in this section was fixed so that the bottom nodes come in a uniform
order. They look much smoother when drawn with an algorithm that minimizes crossing lines (but also much more different from
each other).
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(27) Formal context relating 7 objects with 9 attributes

1s
t

1s
t_

ex
cl

1s
t_

in
cl

2n
d

sg

2n
d

pl

3r
d

sg

3r
d

pl

2n
d

3r
d

1EXCL.SG ×
1EXCL.PL ×
1INCL.PL ×
2SG × ×
2PL × ×
3SG × ×
3PL × ×

As the three first person cells are already fully identified by their person attribute, the context table can leave
out an additional attribute for their number value. Figure 5 contains the corresponding concept lattice.

2SG

2nd sg

1IN.PL

1st_incl

1EX.PL

1st_excl

1SG

1st
2PL

2nd pl

3SG

3rd sg

3PL

3rd pl

2nd 3rd

Figure 5: Lattice of 11 concepts for pronominal elements with clusivity

The last formal context implements the feature decomposition from (17), which repeated (2), the
initial Sierra Popoluca feature inventory from Müller (2006):

(28) Formal context relating 7 objects with 6 attributes

+1 –1 +2 –2 –pl
+pl

1EXCL.SG × × ×
1EXCL.PL × × ×
1INCL.PL × × ×
2SG × × ×
2PL × × ×
3SG × × ×
3PL × × ×

The context already illustrates that the feature system is very similar to the one in (27). Obviously, PER:1 is
the same as +1, NUM:sg is −pl, and NUM:pl is +pl. Also, INCL:yes is the same as +2, and INCL:no is −2.
The lattices in Figure 4 and Figure 6 allow to confirm this visually and also show that PER:3 is the same
as [−1−2]. In fact, the binary-feature lattice contains all distinctions from the PFM-lattice adding exactly
three nodes, i.e. three more possible natural classes: [−1] ({2SG, 2PL, 3SG, 3PL}), [−1−pl] ({2SG, 3SG}),
and [−1+pl] ({2PL, 3PL}).
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2SG1IN.PL1EX.PL1SG 2PL 3SG 3PL

+1 −2 +pl +2 −pl −1

Figure 6: Lattice of 24 concepts for pronominal elements with clusivity

4. Feature algebra in morphological analysis

Morphological analyses distinguish between homophony, where different insertion runs accidentally pro-
duce identical forms and syncretism, where different occurrences of a form can be traced back to their
common origin (e.g. a single insertion rule, lexical item, etc.). The most straightforward means to have an
exponent appear in multiple paradigm cells is to underspecify the features that govern its insertion. Consider
for example the distribution of the different auxiliary forms in (29):

(29) Present and past tense forms of English ‘to be’

SG PL

1 am are
2 are are
3 is are

PRESENT

SG PL

1 was were
2 were were
3 was were

PAST

The feature specifications determining the (non-)insertion of am and is need to be fully specified: they occur
in exactly one paradigm cell. The forms was, are, and were on the other hand occur in multiple cells. They
are candidates for two different kinds of syncretism that result from underspecification.

(30) Insertion feature specifications for syncretic distributions
a. fully specified b. natural-class c. elsewhere
am↔ [+1−pl−past] was↔ [−2−pl+past] are↔ [−past]
is↔ [+3−pl−past] were↔ [+past]

For distributions like (30a) and (30b) insertion needs to compare the meaning of the marker with the feature
specification of every paradigm cell and insert it if the former subsumes the latter. Elsewhere distributions
like (30c) additionally require resolving the competition between multiple compatible markers. To correctly
recreate such distributions, where a more specific marker like was occurs in a subset of the cells that a more
general marker like were also matches (1SG/3SG PAST vs. all PAST cells), the more specific marker needs
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to block the more general one in these cells.23 It is usually assumed that with this Pān. inian relation between
two markers blocking happens automatically – enforced by a blocking principle, subset principle, elsewhere
principle, etc., which is part of the grammatical core: As the more specific exponent was already indicates
past tense, the additional insertion of the blocked exponent were into these two past tense cells would fail
to add any information anyway.

4.1. Extended exponence

Regarding Pān. inian blocking as a morphological principle does not mean that it is impossible for languages
to violate it. There are in fact cases where exponents occur in a superset of contexts of more specific
ones – making them redundant with regards to information-transfer, viz. extended exponence. Consider for
example the distribution of the -wa and -gi suffixes in the following paradigm:

(31) Animate intransitive agreement affixes of Fox (Bloomfield 1927)

1EXCL 1INCL 2 3
SG ne- • ke- -wa
PL ne- -pena ke- -pena ke- -pwa -wa-gi

According to the blocking principle, the insertion of -gi should block the insertion of -wa in the 3PL cell:
The cells of the former are a proper subset of the extent of the latter (32a). Equivalently, its features are a
superset of the other (32b).

(32) Blocker/blockee relation between the distributions of -gi and -wa
a. {3PL} ⊂ {3SG,3PL} b. [+3+pl] A [+3]

In other words, the occurrence of a third person marker -wa is unexpected as the presence of -gi already
indicates this information – even within a more specific information. Overriding the blocking principle
for such cases of extended exponence requires the use of additional grammatical machinery like feature
copying, rule blocks (‘slots’), contextual features, marker sensitivity, or enrichment.24 I will sketch the
contextual feature solution: Blocking is assumed to result from discharging a markers’ features after it has
been inserted – making them unavailable for further insertion (Noyer 1992). In the case of extended expo-
nence, however, a subset of these features are marked as being contextual: Like inherent features, contextual
features govern the (non-)insertion of the marker. Unlike them, they are not discharged afterwards and are
thus still available for further exponence.

(33) Contextual feature implementation of extended exponence
a. -gi↔ [+pl] / [+3] b. -wa↔ [+3]

Having the -gi suffix in (33a) specify the third person feature as contextual instead of inherent feature
overrides its blocking discharge and effects the insertion of the extended third person exponent -wa.25

Independent of the concrete technical solution, such a division of labor between principled blocking
and an overriding formalism for special cases represents the markedness of extended exponence: Being a
deviation from the expected distribution and requiring additional information in the grammar makes mor-
phologies with this redundant marking more complex and thus harder to acquire. The distinction between
blocking and extended exponcence thus contributes to the restrictiveness and empirical predictions of mor-

23Under the additional premise that only one insertion can apply (‘a single slot’), this is simply a logical requirement: If the more
general marker blocked the more specific one, the latter would not be inserted at all.

24Note that the concrete implementation and terminology is not relevant here (only the prediction from overriding default blocking
having additional analytical costs).

25One might challenge the claim that it is the marker failing to block (the primary instead of the extended exponent) that is regarded
the special case in this solution.
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phological theory.26 The use of autonomous feature algebra, however, jeopardizes the empirical significance
of this distinction because it decouples the notion from observable distributional facts: In the following ex-
ample, within autonomy, the analysis can be switched between having and lacking extended exponence by
the choice of a notational variant for a marker.

Consider the distributions of the suffixes -s and -t in the analysis cited in (34). Clearly, they are in a
Pān. inian relation: The cells with -s are a proper subset of the cells with -t: {2SG} ⊂ {2SG,2PL,3SG}

(34) Present tense agreement affixes of German (Müller 2006)27

SG
1 +1−2−pl -e
2 −1+2−pl -s-t
3 −1−2−pl -t

PL
1 ////+1−2+pl -n
2 −1+2+pl -t
3 ////−1−2+pl -n

/s/↔ [+2−pl]
/n/↔ [−2+pl]
/t/↔ [−1]
/e/↔ [ ]

According to the blocking principle, the more specific marker -s should block the insertion of -t. This is
violated, so the occurrence of -t in the 2SG cell is to be regarded as extended exponence. Employing the
inherent/contextual features distinction, this gives the following vocabulary items for the two markers:

(35) Contextual feature implementation of extended exponence
a. /s/↔ [−pl] / [−1+2] b. /t/↔ [−1]

However, if you compare these with the attached list of vocabulary items, the analysis follows a different
reasoning that silently requires autonomous feature algebra: To generate the paradigm in (34) with the
given vocabulary items, the feature set comparisons by the subset principle needs to treat them as opaque
sets of symbols. Only then will the notation [+2−pl] fail to be a superset of [−1] and therefore -s not block
the insertion of -t with that meaning. As this contradicts the relation between the corresponding extents
{2SG} ⊂ {2SG,2PL,3SG,3PL}, this is only possible with an autonomous feature algebra, where [+2−pl]
and [−1+2−pl] are actually differentiated although they refer to the same set of paradigm cells.

The issue is not so much that this analysis manages to account for a case that is usually regarded as ex-
tended exponence without needing to use extended exponence machinery. The point is that the autonomous
feature algebra (being a more powerful superset of the extensionalistic model) is just as compatible with the
extended exponence analysis in (35) as with the other one – resulting in analytical ambiguity.28 It turns the
question whether there is extended exponence in the paradigm into whether one chooses to notate [+2−pl]
or [−1+2−pl] for -s, which due to their extensional identity is not decidable on an empirical basis.29

I will briefly illustrate that it is not possible to exploit notation to conceal extended exponence in
the same way without feature autonomy: In the extensionalistic model, [+2−pl] and [−1+2−pl] are
equivalent because in (34) +2 entails −1. In other words, there is no paradigm cell that has +2 but lacks
−1. The only way to change that is to introduce such a cell. For example, one could reanalyze German to
have an underlying clusivity distinction introducing a +1+2 cell:

26Apart from the pure markedness of extended exponence, morphological theories occasionally also make predictions about the
relative order between primary and extended exponents.

27In Müller’s (2006) analysis, the crossed out −1 features are the result of the prior application of an impoverishment rule [±1]→
∅ / [−2+pl] not concerning the current point.

28To resolve this ambiguity, one would probably need to replace all grammatical machinery that can be emulated with autonomous
features (introducing notational variants as necessary). This does not seem to go without also undermining the natural-class restric-
tiveness of feature systems.

29Admittedly, this does not entail that feature autonomy is wrong but that it makes analysis unnecessarily ambiguous and thus
harder to falsify. An extended exponence analysis enforced by extensionalism for example suggests functional pressures to drop the
information-wise redundant -t from the 2SG cell in (34). Without such expected outcomes, it seems impossible to decide on the
empirical adequacy of general notions like the ‘markedness of extended exponence‘ hypothesis.
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(36) Hypothetical clusivity reanalysis of German agreement affixes
SG

1 +1−2−pl -e

2 −1+2−pl -s-t
3 −1−2−pl -t

PL
1 +1−2+pl -n
12 +1+2+pl *-e
2 −1+2+pl -t
3 −1−2+pl -n

While this makes the spurious prediction of -e instead of -n in the new cell – requiring further adaptations –,
it eliminates the entailment between +2 and−1. However, it does not change that -s is in a Pān. inian relation
with -t and therefore cannot be used to mask their extended exponence. The only way to achieve this is
to introduce a paradigm cell with a completely new word form – namely where -s occurs without -t and
the meaning is different from second person singular.30 Feature extensionalism thus makes it impossible to
alter the extended exponence fact without also describing an empirically different language.

4.2. Impoverishment

A second example illustrating how the use of autonomous feature algebra undermines the restrictiveness
of morphological formalisms is impoverishment (Halle and Marantz 1993, Frampton 2002). In Distributed
Morphology, impoverishment rules are deletion operations that alter the morphological input before the
insertion of vocabulary items. As they are able to delete features from the input, they have the effect
that a marker that would normally be inserted for a specific paradigm cell is bled because some of its
insertion-essential features have been impoverished. In that case, it is possible that a different marker
subsuming the impoverished features is inserted instead. As impoverishment can only delete features, the
alternative marker can never be more specific than the prevented one. Accordingly, it is only possible to
reproduce a limited set of syncretic distributions by impoverishment rules, namely those where distinctions
are neutralized and more general markers replace more specific markers (‘retreat to the general case’).
However, this restriction does not hold with autonomous feature algebra.

Consider the abstract example in (37) with two markers A and B whose distributions are in a Pān. inian
relation such that A is regarded less specific than B.

(37) Abstract paradigm with extended and primary exponent

SG PL

3 A A
PRESENT

SG PL

3 AB AB
PAST

A↔ [+3]
B↔ [+past] / [+3]

With an extensionalistic feature algebra exactly two changes can be made impoverishing a set of cells where
both markers occur. Firstly, it is possible to delete features that distinguish the more specific marker from
the less specific marker:

(38) Impoverish [+past]→ ∅ / [+3+pl]

SG PL

3 A A
PRESENT

SG PL

3 AB A
PAST

Accordingly, the more specific marker is blocked while the less specific marker is still present. Secondly, it
is possible to delete features that both markers share:

30Reanalyzing the number distinction as minimal/augmented, a first person minimal inclusive *-s.
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(39) Impoverish [+3]→ ∅ / [+pl+past]

SG PL

3 A A
PRESENT

SG PL

3 AB
PAST

Accordingly, both markers are blocked.
The third logical possibility – preventing the insertion of less specific marker without affecting the

insertion of the more specific marker – is regarded impossible.31 However, impoverishment has the power
to generate this distribution if feature specifications are treated as opaque sets of meaningless symbols
(autonomy):

(40) Impoverish [−1−2]→ ∅ / [+3+pl+past]

SG PL

3 A A
PRESENT

SG PL

3 AB B
PAST

A↔ [−1−2]
B↔ [+3+past]

As long as the feature system provides the notational variation for the markers’ features, it is possible
to prevent a less specific marker without affecting a more specific one. Feature autonomy thus makes it
possible to override ‘retreat to the general case’ in the sense that ‘general case’ refers to the observable
distributions.32

5. Remarks on feature deletion

Morphological models like Distributed Morphology rely on feature deletion for many of their elementary
operations (insertion as feature discharge, impoverishment, fission). To make such operations follow exten-
sionalistic feature algebra, it needs to be determined how feature specifications are to be subtracted from
one another extensionalistically: The use of plain set difference over the maximal sets of feature symbols
would bring back the excessive power of feature autonomy, e.g. the deletion of [−1] from [+3+pl] result-
ing in a notational variant having +3 but lacking −1. Below, I will sketch a possible solution based on the
idea that feature deletion is essentially pre-emptive zero-insertion (Trommer 1999; 2003)

Consider the impoverishment rule [±1]→ ∅ / [+pl] applied to the 3PL and 1PL cell of a pronominal
paradigm of the same shape as English (three persons, two numbers, no clusivity). Two of these four
subtractions are trivial. Trying to remove features from a specification that are not entailed by it (not even
in it) does not change anything:

(41) Non-superconcept subtraction as identity operation
a. [+3+pl] − [+1] = [+3+pl]
b. [+1+pl] − [−1] = [+1+pl]

In other words, the set of markers that can be inserted into the cells is not affected by these deletions.
Figure 7 gives the lattices of marker meanings that are compatible with each of them (so that markers can
be inserted into the cell).

31Crucially, this means that patterns like in (40) need to be analyzed differently, e.g. by having a different segmentation with three
markers (A, AB, and B) instead of two. In other words, the restriction translates into concrete predictions contributing to the empirical
falsifiability of the theory.

32Both the extended exponence and the impoverishment issue arise from a more general question regarding the empirical foundation
of the notion of specificity. In Distributed Morphology the specificity ordering between two markers follows either from the subset
relation between their features (Halle and Marantz 1993), or the cardinality of their features (Halle 1997), or a combination of both –
possibly enhanced or broken down by a feature hierarchy (Noyer 1992, Müller 2005). What all variations of these specificity principles
have in common is that they are extensions of the subset relation between the particular paradigm cell sets: If marker A matches a proper
subset of paradigm cells of marker B, then A is also more specific than marker B, while the converse is not necessarily true. However,
this only applies to an extensionalistic feature algebra. With feature autonomy, markers in Pān. inian relation may be analyzed to be in
any specificity relation by using different notational variants. Accordingly, the notion of specificity loses its distributional significance.
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If one regards the subtraction of [−1] from the [+3+pl] lattice on the left as insertion of a [−1]
zero-marker, two things follow: Firstly, any marker whose meaning is a superconcept of [−1] cannot be
inserted any more because that markers’ distribution would be in Pān. inian relation with the zero-marker and
therefore blocked. Secondly, any marker whose meaning is a subconcept of [−1] (i.e. [+3+pl], [−1+pl],
and [+3]) cannot be inserted any more because this would contradict the insertion of the zero-marker which
would have been blocked by the more specific markers.

>

−1 +pl −2

−1 +pl +3 −2 +pl

+3 +pl

>

−2 +pl −3

−2 +pl +1 −3 +pl

+1 +pl

Figure 7: 3PL and 1PL cell specifications with their superconcepts

Therefore, only [−2+pl], [+pl], and [−2] are possible insertion meanings after the deletion. This set of
meanings may be abbreviated as [−2+pl] as this specification entails exactly the said meanings and will
therefore allow their insertions:

(42) Subtract a superconcept having a complementary concept
[+3+pl] − [−1] = [−2+pl]
{/////////+3+pl, /////////−1+pl, ////+3, −2+pl, ////−1, +pl, −2} = {−2+pl, +pl, −2}

Applying the same logic to the subtraction of [+1] from the [+1+pl] lattice on the right, [−2+pl],
[−3+pl], and [+pl] are possible insertions after the deletion:

(43) Subtract a superconcept lacking a complementary concept
[+1+pl] − [+1] = {−2+pl, −3+pl, +pl}
{/////////+1+pl, −2+pl, ////+1, −3+pl, ////−2, +pl, ////−3}

As the lattice contains no concept entailing exactly these three meanings, they cannot be abbreviated by a
single meaning (only a boolean lattice would ensure this).

The following paradigm tables illustrate that these rules for feature set subtraction reflect the distri-
butional facts in the desired way: Removing [−1] from [+3+pl] results in zero-insertion in the cells {2SG,
2PL, 3SG, 3PL}:

(44) Distributions corresponding to [+3+pl] − [−1]

SG PL

1
2
3

+3+pl

SG PL

1
2 ∅ ∅
3 ∅ ∅

−1

SG PL

1
2 ∅ ∅
3 ∅ ∅
−2+pl

SG PL

1
2 ∅ ∅
3 ∅ ∅

−2

Afterwards, [−2+pl] and [−2] markers can still be inserted as they neither are blocked by the zero-marker
nor blocking it themselves. Being compatible with [+3+pl], they are in overlapping distribution with
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the impoverished cells. This gives exactly the kind of markers that match an impoverished cell meaning:
subsuming the cell and disjoint or overlapping with the deleted features’ distribution.

Removing [+1] from [+1+pl] results in zero-insertion in the {1SG, 1PL} cells. Accordingly, a
marker with the meaning [−2+pl], which is in overlapping distribution with the zero-marker and therefore
still informative, can be inserted:

(45) Distributions corresponding to [+1+pl] − [+1]

SG PL

1
2
3

+1+pl

SG PL

1 ∅ ∅
2
3

+1

SG PL

1 ∅ ∅
2
3
−2+pl

SG PL

1 *∅ *∅
2
3

−2

A [−2] marker, however, is in Pān. inian relation with the zero marker and therefore blocked in the {1SG,
1PL} cells. Consequently, it is not possible to insert a marker [−2] marker into the 1PL cell after this cell
has been impoverished the [+1] feature.

6. Conclusion

As morphological analysis strives to reconstruct the generalizations that native speakers make about the
internal structure of words, it is faced with recurring agglomerations: Some combination of word forms
make better generalizable clusters than others – they are natural classes that have some inherent connection
to be discovered. In inflectional grammar, these clusters are represented by feature specifications: While
other combinations of paradigm cells cannot be affected by a single rule or constraint, natural classes may be
subsumed under a single feature specification and therefore straightforwardly filled with a syncretic marker.
Usually, these morphosyntactic specifications are comprised of semantic or syntactic features, so that they
are motivated independently of the inflectional clustering at hand. The features selected by the need to
represent the right natural classes will therefore rarely provide a minimalistic notation for the different
contrast present in the paradigm. As soon as these features interact logically in one or another way, it is
inevitable that inflectional grammar is facing different notational possibilities to refer to one and the same
set of paradigm cells – as for example with the clusivity/number interaction. As long as these variants are
treated indiscriminately by the grammatical formalism, they only concern stylistic variation and make no
empirical difference. If they are, however, differentiated by the grammar – treating them as sets of opaque
symbols – formal machinery generally considered restricted may acquire substantial power. As I argued, it
is undesirable to make use of this extra power as long as the predictions that follow from a more restricted
morphological grammar doing without it are not falsified. If only the most specific notational variant is
used to refer to linguistic objects in grammatical formalisms, this effect can be avoided.
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