Calving distribution of the Teshekpuk caribou herd, 1994–2003

Geoff M. Carroll¹, Lincoln S. Parrett¹, J. Craig George² & Dave A. Yokel³

¹ Alaska Department of Fish and Game, P.O. Box 1284, Barrow, Alaska 99723, USA (geoff_carroll@fishgame.state.ak.us; ftlsp@uaf.edu).
² North Slope Borough Department of Wildlife Management, P.O. Box 69, Barrow, Alaska 99723, USA (Craig.George@north-slope.org).
³ Bureau of Land Management, 1150 University Avenue, Fairbanks, Alaska 99709, USA (Dave.Yokel@ak.blm.gov).

Abstract: Parturient female caribou from the Teshekpuk caribou (Rangifer tarandus granti) herd (TCH) have been observed across the western North Slope, but most cows that were seen with calves during the calving period were in the area surrounding Teshekpuk Lake. During surveys conducted between 1994 and 2003, 155 (91%) of 171 collared cows seen with calves were within an area given protected status in the 1998 Bureau of Land Management Final Integrated Activity Plan/Environmental Impact Statement (IAP/EIS). The percentage of adult collared cows seen with a calf between 1994 and 2003 has ranged from 44% to 86%, with a mean of 66%. The years with the lowest percentage of collared cows seen with calves were 1997 (50%) and 2001 (44%). In 1997 most of the herd migrated much farther south than usual, and in 2001 unusually deep, persistent snow restricted spring migration, resulting in fewer cows returning to the traditional calving area during the calving period. When snowmelt dates were earlier, calving locations were farther north. Average standardized travel rates for parturient cows were significantly greater before they had calves (7.25 km/day) than after 3.89 (km/day). Geographically, protections granted by the 1998 BLM IAP/EIS appear to adequately cover the concentrated calving grounds, allowing for variance in the annual distribution of calving cows.

Key words: barren-ground caribou, caribou calving, coastal plain, petroleum development, Rangifer tarandus.

Introduction

Justification for the protection of barren ground caribou (Rangifer tarandus granti) calving grounds is based on the premise that access to those habitats has direct population level fitness consequences. A multitude of techniques have been used to assess the importance of the calving grounds to the ecology of barren-ground caribou. While the fitness benefits gained through use of the calving grounds, or some definable region within the calving grounds, are only occasionally quantified (Griffith et al., 2002), descriptions of how habitat varies between calving and peripheral areas are more common (e.g., Eastland et al., 1989; Fancy & Whitten, 1991; Nelleman & Cameron, 1996; Young & McCabe, 1998; Wolfe, 2000; Kelleyhouse, 2001; Barten et al., 2001). The latter studies relied on the assumption, central to habitat selection studies, that differences between selected and avoided habitats represented variation in habitat quality, with subsequent fitness implications. Observations of fidelity to historical calving grounds are also highlighted when discussing the importance of calving grounds to annual cycles (e.g., Gunn & Miller, 1986; Fancy & Whitten, 1991; Schaefer et al., 2000; Mahoney & Schaefer, 2002; Russell et al., 2002; Ferguson & Elkie, 2004).

The primary mechanisms for increased calf survival on the calving grounds are thought to include reduced risk of predation and access to newly emergent, high quality forage with the relative magnitude and scale of importance of these factors in calving ground selection varying among herds (e.g., Kelsall, 1968; Klein, 1970; Bergerud & Page, 1987; Whitten & Cameron, 1980; Fancy & Whitten, 1991; Russell et al., 1993; Barten et al., 2001; Griffith et al., 2002;
Russell et al., 2002). Despite the variation in analytical tools used to assess the importance of the calving grounds to the productivity of caribou, the preponderance of information suggests that calving grounds are important.

The Teshekpuk caribou herd (TCH) is one of four large, barren-ground caribou herds that calve on the northern coastal plain of Alaska. First recognized as a distinct herd in the early 1970s (Silva et al., 1985), the herd size has been estimated using photocensus techniques (Davis et al., 1979) at 2–4 year intervals since 1984, with 45,166 counted in 2002 (Carroll, 2003). Studies using systematic-strip transects, satellite radio collars, and VHF radiotracking have all indicated fidelity to the calving area near Teshekpuk Lake, particularly to the area southeast, east, and northeast of the lake (Carroll, 1992; Philo et al., 1993; Kelleyhouse, 2001; Prichard et al., 2001; Carroll, 2003; Noel & George, 2003).

The annual range of the TCH contains the National Petroleum Reserve – Alaska (NPR-A), which is currently being leased for oil exploration and development. Planning for exploration and development included an extensive consultation process, resulting in the 1998 Northeast NPR-A Final Integrated Activity Plan/Environmental Impact Statement (IAP/EIS; BLM, 1998). As a result of this process, 3 protective areas were established in the area surrounding Teshekpuk Lake due to their value to wildlife resources, including caribou and waterfowl. These areas were termed “No Leasing Area,” “No Surface Activity Area,” and “Special Caribou Stipulation Area,” and varied in their protective rigor (Fig. 1). The combined extent of these areas, termed the “protective boundaries” hereafter, were intended to protect large portions of the calving ground and insect relief areas (BLM, 1998). Revisions to the 1998 IAP/EIS are being considered, which might change the status of the protective boundaries (BLM, 2005).

In this paper, we evaluate the geographic adequacy of protective boundaries established in 1998 to protect the calving grounds of the TCH. We also describe some of the factors that influence calving site selection on an annual basis, and suggest how those factors should be accounted for when establishing long-term protective measures.

Study area
The study area included the portion of the coastal plain between the Colville River and the Chukchi Sea (Fig. 1). This area, north of the Brooks Range in Alaska, encompassed the area utilized by most radio-collared cows of the TCH during the calving period, which we defined as the first 16 days of June. This area is also delimited by the calving grounds of the Western Arctic Herd (WAH) to the southwest (Kelleyhouse, 2001; Dau, 2003), and the Central Arctic Herd (CAH) to the east (Wolfe, 2000). Vegetation on the TCH calving grounds is primarily composed of wet (54%) and moist (24%) sedge communities (Kelleyhouse, 2001), which are dominated by Carex aquatilis and Eriophorum species other than E. vaginatum (Muller et al., 1999). The area contains thousands of thaw lakes and the riparian habitats of several major rivers. June temperatures in Barrow, 140 km north-west of Teshekpuk Lake, averaged 0.91 ± 2.75 °C during 1990–2002 (National Weather Service).

The low density of predators is a significant feature
VHF radiotracking surveys were based out of Umiat with a skid mounted net gun, or a Robinson-44 helicopter, when captures occurred in early September, caribou were seen during TCH calving surveys conducted during 1994–2003 (this study). Golden eagles (Aquila chrysaetos) have been seen occasionally during aerial surveys, but their numbers have not been quantified.

The TCH annual range overlaps with the annual ranges of the CAH (Wolfe, 2000) to the east and the WAH (Davis & Valkenburg, 1978; Kelleyhouse, 2001; Dau, 2003) to the southwest. During the snow-free period the TCH typically ranges across the Arctic Coastal Plain between the Colville River and the Chukchi Sea (Prichard et al., 2001). The coastal plain is also used during the winter, although segments of the herd have occasionally made more dramatic movements, migrating to the foothills of the Brooks Range, the Seward Peninsula, and most recently, the mountains and coastal plain of the Arctic National Wildlife Refuge (ANWR) (Carroll, 1995, 1997, 2001, 2005).

Methods

In late June or early July 1990–2003 (except in 2002 when captures occurred in early September), caribou were captured within 50 km of Teshekpuk Lake and fitted with VHF radio collars or combined Platform Terminal Transmitter (PTT)/VHF collars (Telonics Inc., Mesa, Arizona, USA). A Hughes 500 helicopter, with a skid mounted net gun, or a Robinson-44 helicopter, with a hand-held net gun, were used during capture work. Once captured, we restrained caribou by placing a mask over their eyes and using hobbles and/or ropes to control their legs.

The number of active radio collars deployed in the herd gradually increased during the course of the study. We had 15–20 active radio collars on female caribou until 1995, 25–30 from 1996–1998, and 30–40 from 1999–2003. Satellite collars have been attached to 83 caribou since 1990, with a similar increasing trend in active collars per year. Summaries of movement patterns of satellite collared TCH caribou are summarized elsewhere (Philo et al., 1993; Prichard et al., 2001); here we report the results of VHF radiotracking surveys during the calving period.

VHF Radiotracking

VHF radiotracking surveys were based out of Umiat and Barrow, Alaska. The typical area surveyed each year was an area roughly bounded by the villages of Barrow, Wainwright, Umiat, and Nuiqsut (Fig. 1), although much of the flight time was concentrated around the Teshekpuk Lake area due to the greater number of collars found in the area.

Surveys were conducted from Piper Super Cub (PA-18), Bellanca Scout, or Cessna-185 aircraft. An ATS R4000 telemetry receiver connected to directional antennae was used to radiotrack collared caribou. Prior to 1996, locations were taken from the aircraft Global Positioning System (GPS). Since 1996, locations and flight paths have been recorded with a Garmin 12XL hand-held GPS.

Weather permitting, we initiated calving surveys between 2 and 5 June, but started 8 June in 1995, and flew as frequently thereafter as weather and logistics would allow, usually every 1, 2, or 3 days. Surveys were terminated between 12 and 18 June when it appeared that all or nearly all the parturient collared cows had calved. We flew directly over each collared caribou and noted the location, presence or absence of a calf, and antler condition. When surveys were flown with a Piper Super Cub or Bellanca Scout we also attempted to establish udder condition. We assumed that cows with new, velvet-covered antlers did not conceive during the previous fall or lost the calf during pregnancy (but see Gagnon & Barrette, 1992), so we recorded their location and listed them as nonparturient. We continued to observe cows with hard antlers or no antlers through the calving period to determine if, when, and where they had calves (Gagnon & Barrette, 1992; Whitten, 1995). The first location a female was seen with a calf at heel was recorded as the approximate calving site (Fancy & Whitten, 1991), based on the limited mobility of calves shortly following parturition (Fancy et al., 1989, Kelleyhouse, 2001; Griffith et al., 2002; Ferguson & Elkie, 2004). The location recorded nearest to the middle of the calving period (8 June) was used for cows that were not seen with a calf. The estimated calving sites and locations of cows that were not seen with a calf were plotted using a Geographic Information System (GIS) (ESRI ArcView 3.3, Redlands, California, USA) to determine the location with respect to the protective boundaries.

On several occasions cows had calves at heel the first time we observed them. If the calves appeared to be very young, we assumed that they had been born shortly before we observed them and that observation was used as their calving location. In 2002 calving began earlier than normal and many of the cows already had calves on 2 June.

Snowmelt

To estimate relative spring phenology in the region for a given year, the date of snowmelt was obtained from the National Oceanic and Atmospheric Administration Global Monitoring of Climate Change (NOAA GMCC) site near Barrow (Dutton & Endres, 2002; Ferguson & Elkie, 2004). The location recorded nearest to the middle of the calving period (8 June) was used for cows that were not seen with a calf. The estimated calving sites and locations of cows that were not seen with a calf were plotted using a Geographic Information System (GIS) (ESRI ArcView 3.3, Redlands, California, USA) to determine the location with respect to the protective boundaries.
Table 1. Numbers of collared female Teshekpuk Herd caribou seen with a calf or never seen with a calf during calving season, 1994–2003; numbers of calving locations located inside the BLM protective boundaries (see Fig. 2); and the estimated dates of snowmelt in Barrow, Alaska (see Fig. 3).

<table>
<thead>
<tr>
<th>Year</th>
<th>Cows with calf</th>
<th>Cows without calf</th>
<th>Total</th>
<th>Percent of collared cows with calf</th>
<th>Number calves inside</th>
<th>Percent inside</th>
<th>Snowmelt date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>10</td>
<td>6</td>
<td>16</td>
<td>63%</td>
<td>9</td>
<td>90%</td>
<td>11 Jun</td>
</tr>
<tr>
<td>1995</td>
<td>11</td>
<td>4</td>
<td>15</td>
<td>73%</td>
<td>9</td>
<td>82%</td>
<td>10 Jun</td>
</tr>
<tr>
<td>1996</td>
<td>24</td>
<td>4</td>
<td>28</td>
<td>86%</td>
<td>24</td>
<td>100%</td>
<td>30 May</td>
</tr>
<tr>
<td>1997</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>50%</td>
<td>7</td>
<td>88%</td>
<td>9 Jun</td>
</tr>
<tr>
<td>1998</td>
<td>15</td>
<td>12</td>
<td>27</td>
<td>56%</td>
<td>15</td>
<td>100%</td>
<td>1 Jun</td>
</tr>
<tr>
<td>1999</td>
<td>24</td>
<td>12</td>
<td>36</td>
<td>67%</td>
<td>23</td>
<td>96%</td>
<td>13 Jun</td>
</tr>
<tr>
<td>2000</td>
<td>23</td>
<td>4</td>
<td>27</td>
<td>85%</td>
<td>19</td>
<td>83%</td>
<td>14 Jun</td>
</tr>
<tr>
<td>2001</td>
<td>15</td>
<td>19</td>
<td>34</td>
<td>44%</td>
<td>13</td>
<td>87%</td>
<td>11 Jun</td>
</tr>
<tr>
<td>2002</td>
<td>22</td>
<td>8</td>
<td>30</td>
<td>73%</td>
<td>19</td>
<td>86%</td>
<td>25 May</td>
</tr>
<tr>
<td>2003</td>
<td>19</td>
<td>12</td>
<td>31</td>
<td>61%</td>
<td>17</td>
<td>89%</td>
<td>3 Jun</td>
</tr>
<tr>
<td>Total</td>
<td>171</td>
<td>89</td>
<td>260</td>
<td>66%</td>
<td>155</td>
<td>91%</td>
<td></td>
</tr>
</tbody>
</table>

$\bar{X} = 17$, $SE = 1.9$, 9.5 days

1991; Stone et al., 2002; Dan Endres, pers. comm.). NOAA uses a threshold of 30% albedo, the ratio of upward to downward short wave irradiance, as an indicator of snowmelt. The date recorded was the first day the daily average was below 30%. A change from >75% albedo to <30% typically occurred over the course of only 2–3 days, making it a reliable and repeatable index of spring phenology from year to year. This index was measured at a location about 160 km northwest of the TCH calving ground. The occurrence of snow melt on the calving ground was assumed to be temporally correlated with snow melt in Barrow, based on the large scale meteorological factors influencing snow melt on the north slope (Stone et al., 2002).

Geographic center of distribution in relation to snowmelt date

The geographic center of the calving distribution for each year was estimated with the Weighted Mean of Points Extension in ArcView 3.3 (Jenness Enterprises, Flagstaff, Arizona, USA), which determined the average latitude and longitude of points in a given sample. The relationships between the coordinates of the distribution centers and snowmelt date were evaluated using simple linear regression. In addition, 2 maps were produced, one showing calving locations during years of earlier than average snowmelt (average snowmelt date 30 May) and one of later snowmelt (average snowmelt date 12 Jun).

Percentage of cows seen with a calf

We report the percentage of monitored VHF-collared cows, 23 years old, that were seen with a calf during the calving season because parturition rates were not always possible to estimate. During some time periods, only Cessna 185 aircraft were available for surveys, which made it difficult to determine whether cows had distended udders. In addition, during some years TCH caribou were so scattered at the beginning of calving season it was impossible to find many of them to determine whether they had a calf and lost it or were nonparturient. The annual percentages of cows with calves were compared with Barrow snowmelt dates using simple linear regression.

Movement rates from VHF radiotracking information

In 2002, movements of collared cows were monitored more closely than other years to estimate movement rates and direction of travel. Mean angular direction of travel was calculated from the net movement of individual cows during the calving period. Rayleigh's test was used to estimate whether the mean direction of travel differed from random (Zar, 1999). Daily rate of travel between the location the cow was first found (2 or 5 Jun) and the location on 12 June was calculated for cows seen with a calf versus cows that were not seen with a calf. Additionally, the movement rates of parous cows before and after being observed with a calf were estimated. We compared movement rates of parous cows before and after parturition with Rangifer, Special Issue No. 16, 2005
Fig. 2. Teshekpuk Lake area showing Teshekpuk caribou herd calving locations in relation to Bureau of Land Management Environmental Impact Statement protective boundaries from 1994 to 2003 (see Fig. 1). Note, there are 2 calving locations located farther west that are not shown on this close-up.

Because relocation intervals differed slightly among individuals, average daily movement rates were calculated from the net distance moved and the number of days moved between relocations. Because the number of days between relocations was inversely related to the calculated rate of travel \((P = 0.03) \) (suggesting that longer intervals between relocations were likely to underestimate the true daily rate of travel), rates were standardized, adding 497 meters per day between relocations to the estimated rate, based on the slope of the relocation interval and movement-rate regression.

Results

Calving distribution

BLM protective boundaries, as established in the 1998 EIS for the northeast section of the NPR–A, encompassed the area that received the highest use during the calving period (Fig. 2). Of 171 collared cows seen with a calf, 155 (91%) were located within the protective boundaries delineated in 1998. The mean annual percentage of collared cows with calves found within the protective boundaries was 90.0% (Table 1). In contrast, of the 89 cows that were not seen with a calf during the survey period, only 40 (44.9%) were within the protective boundaries at the middle of the calving period.

Yearly calving distributions in relation to snowmelt

Snowmelt date in Barrow ranged from 25 May to 14 June. Latitude of the center of the annual calving distribution was inversely related to the date of snowmelt \((P = 0.004, r^2 = 0.66) \) (Fig. 3). When snowmelt dates were earlier, calving locations were farther north. The longitude of the distributional center of annual calving and snowmelt date were not correlated \((P = 0.62) \). There was also no trend in calving site location over time \((P = 0.27) \).

Percentage of cows seen with calves

The percentage of cows seen with calves during the calving period has ranged from 44% in 2001 to 86% in 1996 (Table 1). The 2 years that had the lowest percentage of observed calves were 2001 (44%) when late, deep snow conditions appeared to hinder the spring migration and 1997 (50%), when most of the herd migrated much farther south in winter than usual. There was no correlation however, between the percentage of cows seen with calves and snowmelt date in Barrow \((P = 0.59) \).

Calving period movements

Of the 23 cows observed with calves in 2002, 7 were first observed before being seen with a calf, and 16
were seen with a calf when first observed. For partrient cows, average standardized travel rate was significantly higher before being observed with a calf than after (7.25 vs. 3.89 km/d, $P = 0.02, n = 7$). The difference in net distance moved during the calving period for cows with calves versus cows without calves was marginally significant (1.09 vs. 3.97 km/d, $P = 0.058, n = 28$). Net movement direction of cows averaged 104 degrees, but was not significantly different from random (Rayleigh’s $R = 4.57, n = 28$).

Discussion

Multiple previous studies have shown fidelity of the TCH to the calving area near Teshekpuk Lake (Carroll, 1992; Philo et al., 1993; Kelleyhouse, 2001; Prichard et al., 2001; Carroll, 2003; Noel & George, 2003). In order to protect this calving area and waterfowl habitat areas, BLM created protective boundaries in its 1998 IAP/EIS, which appear to adequately encompass annual variance in the preferred calving areas of the TCH. During our study, from 1994 through 2003, 171 collared cows were seen with a calf and 155 (91%) were located within the protective boundaries. Annually, the mean proportion of calving cows within the protected boundaries averaged $90 \pm 2\%$. If development occurs within these protective boundaries in the future, this baseline measure could be compared to future averages as an indicator of displacement, absent any simultaneously occurring environmental changes.

Similar to other studies of telemetered female caribou (Fancy et al., 1989; Kelleyhouse, 2001; Griffith et al., 2002; Ferguson & Elkie, 2004), TCH females in our study moved at relatively slow rates during the calving period, and slowed even more following parturition, giving us confidence that the location where a cow was first seen with a calf was reasonably close to the calving site. We also found that cows, partrient or otherwise, were not moving in a consistent direction during the calving period, similar to findings by Fancy & Whitten (1991). This implies that there is no systematic directional bias in calving site estimation. We assume that the results of movement analyses from 2002 are consistent in other years, although it should be mentioned that 2002 was a year with very early snowmelt. Years with deep or persistent snow may lead to different patterns in calving period movement.

Annual variation in the distribution of TCH calving sites during most years appeared to be related primarily to time of snowmelt. During years when the snowmelt was earlier, calving sites tended to be farther north. Unlike bull caribou, which appear to track the northward progression of green-up during the spring (Whitten & Cameron, 1980; G. Carroll, ADF&G, unpubl. data), partrient cows in the CAH and TCH often arrive on the calving grounds before green-up has occurred (Whitten & Cameron, 1980; Kelleyhouse, 2001). Newly emergent and rapidly growing vegetation is high in soluble carbohydrates, nitrogen and phosphorus, which rapidly decline as the summer progresses (White et al., 1975; Whitten & Cameron, 1980; Jorgenson et al., 2002). By calving in areas just beginning to initiate new growth, the relatively immobile cow–calf pairs are able to take advantage of this green-up without having to follow...
this progression northwards, and this perhaps allows calves to initiate independent foraging with high quality, low bulk forage. This result supports the findings of Kelleyhouse (2001), who concluded that at the scale of the concentrated calving area versus the annual calving ground, the TCH consistently selected areas with high rates of biomass increase, as measured by the change in the Normalized Difference Vegetation Index (NDVI). The tendency for caribou to shift the distribution of the annual calving ground in response to the unique conditions encountered each year within the protective boundaries needs to be considered when establishing long-term protective measures. Specific areas within the protective boundaries may be more likely to be used in an average year than others, but the entire area is utilized, given enough variance in environmental conditions.

In addition to snowmelt date, distribution of female caribou during the calving periods, along with calf percentages, can be affected by factors such as where the caribou migrated the previous fall and unusual weather conditions. During winter 1996–1997 most of the herd migrated much farther south than usual, and in spring 2001 unusually deep, persistent snow throughout northern Alaska restricted spring migration (Lawhead & Prichard, 2002; Griffith et al., 2002; Dau, 2003), resulting in fewer cows arriving at the traditional calving area during the calving period. The lowest percentages of collared cows with calves were recorded during spring 1997 (50%) and 2001 (44%), compared to a range of 56%–86% for other years. The low calf percentages during these 2 years may have been partially due to poor perinatal calf survival resulting from the unusually long migration in 1997; adverse snow conditions in 2001; and, possibly, because some parturient cows were hindered from getting to the preferred calving area. The condition of cows during the previous fall would have also had a substantial, but unknown, effect on the productivity of the herd (Cameron et al., 1993, 1994).

While Teshekpuk caribou showed great fidelity to the calving area, it is unknown if development in the area would result in negative population size effects. In the neighboring CAH, concentrated calving in the western, developed portion, of the calving ground shifted to the south and southwest as infrastructure density increased, 1980–1995 (Wolfe, 2000; Cameron et al., 2002). Although photocensus results from the Alaska Department of Fish and Game indicate that the herd has continued to grow through 2002 (Cameron et al., 2002; Noel et al., 2004), density of caribou in the developed area north of the “spine road” has decreased, particularly during calving, from 1978 to 2001 (Lawhead & Prichard, 2003; Noel et al., 2004). Portions of the historical CAH calving grounds west of the Kuparuk River that have received the most use during the calving and postcalving periods in recent years (1993–2003) are south or southwest of the Kuparuk oilfield complex (Wolfe, 2000; Lawhead & Prichard, 2003). Although the CAH population size continued to increase (Cameron et al., 2002) after the shift in concentrated calving away from the Kuparuk Development Area (Wolfe, 2000), lower parturition rates of cows calving in the more developed, western portion of the calving ground compared to those calving in the relatively undeveloped eastern portion of the calving ground were documented from 1988 through 1994 (Cameron et al., 2002), and from 1998 through 2001 (E. Lenart, presented by the National Research Council [NRC], 2003). However, there were not similar differences in calf survival between the western and eastern portions of the calving ground (NRC, 2003).

Although we have shown that parturient TCH cows have demonstrated a historical fidelity to the calving area within the protected boundaries described in this paper, the potential for negative population size effects as a result of displacement due to forthcoming industrial development is a serious issue, and one that cannot be adequately addressed for the TCH at this time. Future research should be directed toward determining the fitness advantages derived from use of preferred, or concentrated calving areas versus peripheral areas, as well as determining baseline levels of calf survival and weight gain of cows and calves during the period that cow–calf pairs use the calving grounds.

Acknowledgments

We thank M. Webb for providing excellent piloting and observations during recent years. Funding for the radio collars and surveys was provided through a joint project of the Bureau of Land Management, Alaska Department of Fish and Game, and the North Slope Borough Department of Wildlife Management and included NPRA impact funds granted to the North Slope Borough by the state of Alaska Department of Community and Economic Development. We also thank B. Griffith, R. Suydam, S. Murphy, and an anonymous reviewer for comments on the manuscript.

References

and dispersion of parturient caribou at calving as anti-predator tactics. – Canadian Journal of Zoology 65: 1597–1606.

Gunn, A. & Miller, F. L. 1986. Traditional behavior and fidelity to caribou calving grounds by barren-ground caribou. – Rangifer Special Issue 1: 151–158.

