
195Rangifer, Special Issue No. 20, 2012

The 13th North American Caribou Workshop
Winnipeg, Manitoba, Canada
25–28 October, 2010

A guide to developing resource selection functions from telemetry data 
using generalized estimating equations and generalized linear mixed models

Nicola Koper1 & Micheline Manseau1, 2

1 Natural Resources Institute, University of Manitoba, 70 Dysart Rd., Winnipeg, MB, Canada, R3T 2N2 
(koper @ cc . umanitoba . ca).

2 Western and Northern Service Centre, Parks Canada, 145 McDermot Ave, Winnipeg, MB, Canada, R3B 0R9.

Abstract: Resource selection functions (RSF) are often developed using satellite (ARGOS) or Global Positioning System 
(GPS) telemetry datasets, which provide a large amount of highly correlated data. We discuss and compare the use of 
generalized linear mixed-effects models (GLMM) and generalized estimating equations (GEE) for using this type of data 
to develop RSFs. GLMMs directly model differences among caribou, while GEEs depend on an adjustment of the standard 
error to compensate for correlation of data points within individuals. Empirical standard errors, rather than model-based 
standard errors, must be used with either GLMMs or GEEs when developing RSFs. There are several important dif-
ferences between these approaches; in particular, GLMMs are best for producing parameter estimates that predict how 
management might influence individuals, while GEEs are best for predicting how management might influence popula-
tions. As the interpretation, value, and statistical significance of both types of parameter estimates differ, it is important 
that users select the appropriate analytical method. We also outline the use of k-fold cross validation to assess fit of these 
models. Both GLMMs and GEEs hold promise for developing RSFs as long as they are used appropriately.
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Introduction and rationale
This document provides a practical guide for devel-
oping resource selection functions from telemetry 
data, using generalized estimating equations and 
generalized linear mixed models, and outlines how 
to validate these models using k-fold cross valida-
tion. For more detailed explanations and to better 
understand the theory and mathematics behind these 
methods, readers should refer to Koper & Manseau 
(2009), in which we cover most of the topics within 
the present manuscript in more detail; Gillies et al. 
(2006) and Bolker et al. (2009) regarding GLMMs; 
and Boyce et al. (2002) regarding k-fold cross vali-
dation, as well as numerous excellent sources and 
textbooks referred to in those works. Fieberg et al. 
(2010) provides a useful and detailed comparison 
among various approaches to analyzing habitat selec-
tion, including GEEs and GLMMs. We also note 

that this paper discusses the development of resource 
selection functions (RSF), which estimate the relative 
probability of use of different habitat types (suitable 
vegetation), rather than resource selection probability 
functions (RSPF), which estimate the actual probabil-
ity of a habitat being used; for more information on 
the additional assumptions and issues associated with 
RSPFs, see Lele & Keim (2006).

To facilitate the use of this paper as a guide, we 
outline a number of components important to RSF 
development below, and in most cases divide each 
section into What, Why and How subsections. Statisti-
cal codes are provided to conduct GEEs and GLMMs 
in SAS and to conduct GEEs in R. GLMM code is 
not provided for R because at the moment, there are 
no GLMM libraries that allow the user to request 
empirical standard errors.
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Resource selection functions
What are resource selection functions?
Resource selection functions are models used to com-
pare the amount of used habitat with the amount 
of available habitat (Manly et al., 2002). If a habitat 
type, such as jack pine stand, is used by animals 
more than expected relative to the proportion of that 
habitat across the landscape, the habitat is assumed 
to be selected; if it is used less often than expected 
relative to the proportion of that habitat across the 
landscape, the habitat type is assumed to be avoided. 
For example, if 10% of the landscape is made up of 
jack pine stands, but the animals spend 25% in jack 
pine stands, then the assumption is that jack pine 
stands are selected.

Why are resource selection functions important?
Resource selection functions are used to quantify the 
relative importance of different vegetation or habitat 
types, or different components of the landscape, given 
the availability of those habitat types on the land-
scape. This helps define the realized niche of caribou 
or the species of interest.

How are resource selection functions developed?
When using telemetry data, there are different ways 
to estimate the resource use including a determina-
tion of the resource type associated with each telem-
etry point, the amount of different resources within 
a buffer around each telemetry point, the distance to 
different resource types from each point or the spatial 
characteristics of resource patches associated with 
each point. To quantify this, animal locations are 
imported from the satellite (ARGOS) or GPS telem-
etry data into a geographic information system (GIS) 
that also includes a land cover layer and then, the 
attributes are derived for each landscape parameters 
of interest and for each location point. To quantify 
availability, points are randomly generated within the 
individual’s or herd’s home range or within a certain 
distance of the telemetry points, and similarly the 
attributes are derived for the landscape parameters 
of interest. The total number of randomly generated 
points varies with each study; usually, the same num-
ber of telemetry points and random points are used, 
or the number of random points is a multiple (usually 
between 2 and 10) of the number of telemetry points. 

The telemetry points from animal locations (“used” 
locations) are then compared with these randomly 
located points (“available” locations), to determine 
whether there is more or less use of each habitat type 
than expected given how much of each habitat type 
is available (Manly et al., 2002). Selection can only be 
evaluated if availability can also be quantified. For 

example, if 60% of the caribou locations are in treed 
muskeg, but that habitat type makes up 75% of the 
landscape (or 75% of the random points), the results 
would indicate an avoidance of treed muskeg, even 
though more than half of the locations are in treed 
muskeg, because the proportion of telemetry points 
in treed muskeg is less than the proportion of random 
points in that habitat on the landscape.

Autocorrelation in telemetry data
What is autocorrelation in telemetry data?
Locations from satellite or GPS collars have provided 
us with a large amount of data which can be used to 
infer how animals use the landscape. In particular, 
once animals are collared, thousands or tens of thou-
sands of locations for that animal are recorded, and 
by overlaying those locations on a land cover map 
using a GIS, the way that animal uses its landscape 
can be determined to a high degree of precision and 
accuracy. 

These data points are, however, not independent 
of one another. There are two important sources of 
correlation in telemetry data. The first is that there 
are many data points from just a few caribou. Data 
points from a single individual are not independent of 
one another, and as such do not each provide us with 
a unique piece of information. For a comprehensive 
review of this issue, see Gillies et al. (2006).

The second source of correlation arises from the 
fact that animal locations are recorded sequentially. 
Locations can be recorded as often as every half hour, 
or less than once a day, as desired. Determining the 
optimal length of time between locations can be an 
important question, as more frequent locations result 
in shorter battery life. If locations are recorded too 
frequently, each location provides little new infor-
mation about resource use; presumably, the current 
location of the animal is highly influenced by the 
previous location of the animal, or even a number of 
previous locations. Such data are serially autocorrelat-
ed. On the other hand, if locations are too infrequent, 
there may be insufficient data to evaluate habitat 
use relative to habitat availability, particularly when 
estimating the use of uncommon habitat types (see 
discussion in Fortin et al., 2005). 

While locations taken few minutes apart are prob-
ably highly correlated, and locations taken 5 days 
apart are much less correlated, the interval at which 
points become uncorrelated is not known. Indeed, 
Cushman et al. (2005) argued that locations may be 
correlated at intervals of a month apart. As such, 
there is no interval between data locations at which 
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telemetry locations are known to be independent of 
one another. 

Why care about serial autocorrelation in telemetry data?
Autocorrelation between data points might be of 
interest to the researcher (Boyce et al., 2010). For 
example, this might help the researcher understand 
how likely an animal is to stay in a particular habitat 
type if it is already there. However, in some cases 
this correlation among data points is not of interest 
and becomes a statistical nuisance. While generally 
serial autocorrelation has relatively little effect on the 
parameter estimates that are derived from statistical 
models, they can affect any associated statistical com-
parisons, or any analysis that uses standard errors or 
confidence intervals. For example, if this correlation 
is ignored, it might be possible to estimate how much 
more or less animals use different habitat types in 
relation to what is available to them, but it would not 
be possible to determine whether this is a statistically 
significant habitat selection or avoidance. 

This is because a key component of calculating 
statistical significance is knowing how much infor-
mation is available to go towards comparisons of 
resource use. More information provides the user with 
more confidence that estimates of habitat selection 
or avoidance are trustworthy. However, when there 
is a lot of information from just a few animals, it 
can be hard to quantify how much information there 
really is. If the amount of information available is 
overestimated, the likelihood of making Type I errors 
(assuming that there is a statistically significant 
effect of a variable when in fact there is no effect; 
Clifford et al., 1989) is increased. To avoid this, we 
must take correlation among data points within ani-
mals into account.

How can serial autocorrelation in telemetry data be 
controlled for? 
Gillies et al. (2006) recommended that random vari-
ables (also referred to as random effects in the litera-
ture) be included in RSFs to account for the fact that 
data points come from different animals, and that 
data points from individual animals are not inde-
pendent from each other. In these models, a variable 
that represents the individual animal becomes the 
random variable (see section on how GLMM work for 
more information on random variables). One example 
of models that include random effects is generalized 
linear mixed models (GLMM). The “generalized” 
term refers to the fact that the error term associated 
with response variables need not follow a normal 
distribution; as resource selection functions compare 
used habitats (represented by “1” in the response 

variable) with available habitats (represented by “0” in 
the response variable), the response variables follow a 
binary (binomial) rather than a normal distribution. 
The “mixed” term in GLMM refers to the fact that 
both random effects and fixed variables (independent 
variables such as habitat type) are included in the 
model.

We believe that the recommendations by Gillies et 
al. (2006) initiated important progress in the trend 
towards using advanced statistical techniques for 
developing resource selection functions. However, 
they made an error by implicitly assuming that indi-
vidual data points within animals were independent 
from one another. This is not correct, and GLMM are 
not robust to deviations from this assumption (Over-
all & Tonidandel, 2004, and see empirical analysis in 
Koper & Manseau, 2009); this means that statistical 
inferences made from models that ignore correlations 
among data points are likely to be incorrect, leading 
to increased rates of Type I errors. However, the cor-
relation among telemetry points can be compensated 
by using empirical, rather than model-based standard 
errors (e.g., Hardin & Hilbe, 2003). 

Empirical standard errors
What are empirical standard errors?
Empirical standard errors are also sometimes called 
robust standard errors, as they are robust to the 
lack of independence among data points (i.e., lack 
of independence among data points does not lead to 
incorrect empirical standard errors), or Huber-White 
sandwich standard errors (as applied by Gillies et 
al. 2006). The empirical standard error is generally 
larger than the model-based standard error, and the 
closer the modeled correlation structure to the true 
correlation structure, the closer together the model-
based and empirical standard errors will be (Bishop et 
al., 2000). As such, the correlation should be modeled 
to reduce the size of standard errors and therefore, 
increase the power of the analyses. However, this is 
not possible when telemetry data are compared with 
random data points. The empirical standard errors 
are therefore required to correct for the correlation 
among data points.

Why should empirical standard errors be used for RSFs 
developed from telemetry data?
It is critical to use empirical standard errors if these 
are appropriate and necessary. There is often a very 
large difference between empirical and model-based 
standard errors, and this directly leads to differences 
in statistical inference. We found that model-based 
standard errors could be 1/10 the size of empiri-



198 Rangifer, Special Issue No. 20, 2012

cal standard errors (Koper & Manseau, 2009); not 
surprisingly, this has a dramatic effect on the appar-
ent significance of independent variables. Empirical 
standard errors must be used to evaluate statistical 
significance of habitat selection behaviours when 
resource selection functions are developed using 
telemetry data.

How are empirical standard errors included in RSFs?
The variance function differs between empirical and 
model-based standard errors. This is accounted for 
by the selected statistical computer program when 
empirical standard errors are selected by the user.

In this paper, we cover two statistical approaches 
that can both be used with empirical standard errors: 
generalized linear mixed models (GLMM), and gen-
eralized linear models with generalized estimating 
equations (GEE). There are important practical and 
conceptual differences between these approaches that 
must be considered in determining which approach is 
appropriate. Below, we introduce GLMM and GEE, 
and follow with a comparison between the two. We 
then address validation of each type of model using 
k-fold cross validation (Boyce et al., 2002).

Generalized linear mixed-effects models 
(GLMM)
What are GLMM?
GLMM are sometimes also called generalized linear 
mixed models (GLME) or hierarchical models, and 
are referred to as longitudinal, clustered, latent-
variable, or multilevel models. They are parametric, 
and are estimated using maximum likelihood theory 
or associated methods (see Quinn & Keough, 2002 
for a clear explanation of maximum likelihood esti-
mation). Mixed models include fixed and random 
independent variables. Fixed variables are differenti-
ated from random variables in two ways: all levels of 
interest for the factor are included in the design, and 
inference is restricted to these levels. Random vari-
ables, in contrast, include randomly selected levels, 
and allow one to generalize inference over all possible 
levels of the random variable. 

Why are GLMM useful?
Usually a random sample of caribou is monitored to 
allow the manager to infer habitat selection of all 
(or at least, other) caribou in a defined population. 
Differences in habitat selection among individual 
caribou should therefore be modeled using a random 
variable, because not all levels of interest are included 
in the design (i.e., all caribou in the population of 
interest), and the inference should be relevant to all 

possible levels of the random variable (i.e., all caribou 
in the population of interest). 

Another benefit of mixed models is that they can 
be used to analyze hierarchical study designs. This 
means that one can use a single model to evaluate 
effects of local-scale variables nested within broad-
scale variables. For example, there might be interest 
in evaluating effects of vegetation structure (e.g., can-
opy cover), which will be different at every location 
recorded, nested within caribou-scale variables (e.g., 
animal age), which will be the same for every data 
point within an animal. If the hierarchical nature of 
this design is ignored, there may be two unintended 
consequences: (1) if the caribou is considered the unit 
of replication, all local scale variables would have 
to be collapsed into a single value per caribou, thus 
losing an enormous amount of data and, therefore, 
statistical power; and (2) if the local data points are 
considered as the unit of replication, the degrees of 
freedom would be artificially increased at the caribou 
scale, introducing pseudoreplication into the design, 
and increasing the likelihood of making Type I 
errors. Mixed models allow us to analyze variables 
at both of these scales by using the random effect to 
indicate that local-scale variables are not completely 
independent of one another, because they are clus-
tered within the broad-scale variables. 

How do GLMM work?
Differences among caribou, represented by the ran-
dom variable, are modeled by allowing the intercept 
of the relationship between each independent fixed 
variable and the dependent variable to be different 
for each caribou. It is, in fact, possible to assume that 
both the intercept and the slopes of the relationships 
vary among caribou (e.g., see Gillies et al., 2006), but 
this is more complex than allowing only the intercept 
to vary among caribou (and is usually unnecessary 
and results in an overparameterized model; L. Lix, 
University of Saskatchewan, pers. comm.) and will 
not be discussed here. Allowing the intercept to vary 
among caribou recognizes that animals differ from 
one another, but means that habitat or landscape 
structures are assumed to have a similar effect on 
different animals.

While mixed models are an important tool for 
dealing with clustered sampling designs, they are 
not a panacea. The addition of a random effect tends 
to increase standard errors of all the fixed variables 
in the model (Hox, 2002, Quinn & Keough, 2002). 
The consequence of including a random effect is a 
reduction of analytical power, but the inference is 
then correct. 
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Generalized estimating equations (GEE)
What are GEEs?
Generalized estimating equations are a semi-para-
metric alternative to GLMMs. They are semi-para-
metric because the parameter estimates are estimated 
parametrically and the variances are estimated non-
parametrically. 

Usually, part of the process of defining the vari-
ance structure is to define the correlation structure 
of the data points within individual caribou; for 
example, data collected sequentially over time could 
be modeled differently from data that were clustered 
spatially, say across a number of different isolated 
islands. Correlation structures can include, among 
others, an independent correlation structure (in SAS, 
corr=ind), which assumes no correlation among data 
points; a compound symmetric or exchangeable cor-
relation structure (in SAS, corr=CS), which assumes 
that data from a single animal is correlated within 
that animal, but all data points within animals are 
equally correlated; and an autoregressive correlation 
structure (in SAS, corr=AR(1)), which assumes that 
data points within animals that are closer together 
in time are more correlated than data points that are 
farther away. We remind the reader that the latter 
structure is a reasonable assumption for the used 
data points, but not for the random points (Koper & 
Manseau, 2009).

Why are GEEs useful?
When sample sizes (number of caribou) are suf-
ficiently high, GEEs with empirical standard errors 
have the enticing property of producing both param-
eter estimates and standard errors that are trust-
worthy even when the correct correlation structure 
cannot be known (Fitzmaurice et al., 2004). This 
is important when developing RSFs, because the 
correlation structure between telemetry points and 
random points cannot be modeled. 

How do GEEs work?
GEEs deal with the correlation caused by collecting 
numerous samples from each individual (e.g., numer-
ous locations from one caribou) by adjusting the 
standard error to compensate for the lack of independ-
ence among samples. This involves using empirical 
standard errors, rather than model-based standard 
errors, as discussed above (Hardin & Hilbe, 2003). 

Because tests are more powerful if the covariance 
structure can be modeled, users should still compare 
model fit between models with different covariance 
structures, and use the model that fits the data the 
best. Covariance structures can be compared by tak-
ing the ratio of the empirical standard error to the 

model-based standard error (SEE/SEM), and the model 
with the ratio that is closest to 1 is the model that 
fits the data the best (Bishop et al., 2000). Although 
the non-parametric alternative to AIC, the quasi-
likelihood under the independence model informa-
tion criterion, QIC (Pan, 2001), is also theoretically 
capable of this comparison, our research has dem-
onstrated that this criterion is biased (Barnett et al., 
2010). Therefore, we recommend that QIC should 
not be used for comparisons among models until it 
is redeveloped, a process that is in progress (J. Hilbe, 
2010, pers. comm.). Because the correlation structure 
among the used data points differs from the correla-
tion structure among random points, this correlation 
structure cannot be modeled correctly, and there 
will be some dependence on the fact that empirical 
standard errors are robust to misspecification of this 
structure.

Choosing between GLMM and GEE for 
developing RSFs
What are the main differences between GLMM and GEE?
There are a number of practical and conceptual dif-
ferences between GLMM and GEE, and these must 
be considered before determining which method is 
appropriate for analyzing any data set. These differ-
ences are summarized in Table 1, and are discussed 
in more detail below.  

Parametric and semi-parametric modelling
Because GLMMs are parametric, while GEEs are 
semi-parametric, the analytical process for generating 
GLMM is more complex, takes longer, and is more 
likely to fail to converge (Agresti, 2002). Nonetheless, 
in our experience GLMM can generally be used suc-
cessfully for developing resource selection functions 
using telemetry data.

Hierarchical versus non-hierarchical models
GLMMs model differences among animals directly, 
and this allows for a hierarchical data analysis that 
directly models effects of independent variables at 
different spatial or temporal scales. This hierarchi-
cal analysis is not possible with GEEs. GEEs do 
not directly model differences among animals, but 
instead account for the lack of independence among 
samples within animals by adjusting the standard 
error via an altered variance estimate.

Marginal versus conditional parameter estimates
When response variables are binary (or otherwise 
non-normal), there is an important difference in 
the meaning of the parameter estimates gener-
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ated between GEEs and GLMMs (Fitzmaurice et al., 
2004: 364), and this can result in large differences in 
parameter estimates and standard errors between the 
two approaches (Fitzmaurice et al., 2004; Koper & 
Manseau, 2009). This is primarily because GLMMs 
produce conditional (subject-specific) parameter esti-
mates (see Agresti, 2002 for reasons why marginal 
estimates derived from GLMMs should be avoided), 
while GEEs produce marginal (population-specific) 
parameter estimates. Conditional parameter esti-
mates model how a typical individual might respond 
to independent variables. Marginal parameter esti-
mates evaluate effects of independent variables on 
the population. 

Two examples may help clarify the difference in 
interpreting marginal and conditional parameter 
estimates. First, we will consider an example derived 
from epidemiology. A marginal question might be, 
“what is the effect of this drug on cancer rates across 
a population?” This type of study would be designed 
to compare how many people got cancer in popula-
tions that received the drug, and how many people 
got cancer in populations that did not receive the 
drug. This is a population-specific approach because 
it addresses how the independent variable, use of a 
drug, affects a whole population.

An equivalent conditional question would be, 
“what is the likelihood of a typical patient recovering 
if we give them this drug?” This type of study would 
be designed to compare whether people who received 
the drug were more likely to get cancer than people 
who did not receive the drug. This is a subject-specif-
ic approach because it addresses how the independent 
variable, use of a drug, affects the likelihood of a 
typical individual getting cancer.

The difference between these two approaches may 
seem like semantics until one reflects on the posi-
tion of a patient. Most individuals will care much 
more about what the effect of the drug might have 
on their own probability of getting cancer, compared 
with the effect of the drug on cancer rates across a 
population. This results in a very real difference in 
the interpretation of marginal and conditional popu-
lation estimates. 

The difference is also important from a wildlife 
management perspective. An example of a marginal 
question might be, “what is the difference in habi-
tat use of caribou between landscapes with high or 
low jack pine cover?” This type of study might be 
designed to compare whether populations of caribou 
that lived in landscapes with high jack pine cover 
demonstrated different habitat selection from popula-

Table 1. Comparison between the use of generalized estimating equations (GEEs) and generalized linear mixed models 
(GLMMs) for developing resource selection functions using telemetry data.

GEE GLMM

Analysis Semi-parametric Parametric

Method of dealing with 
correlation

Adjusts standard error to account for 
correlation of data points within groups 
(animals)

Models differences among animals directly, 
usually by allowing intercept to vary 
among animals

Complexity Simpler More complex

Convergence More likely Slightly less likely

Robustness Parameter estimates and standard errors 
robust to misspecifi cation of the correlation 
structure when using empirical standard 
errors

Standard errors robust to misspecifi cation 
of the correlation structure when using 
empirical standard errors

Interpretation Marginal Conditional

Information theory Use with QIC is not recommended Can use with AIC

Treatment of 
hierarchical data

All nested levels treated equally – better 
if clustering is a nuisance, not the focus of 
the study

Explicitly models hierarchical or nested 
sampling design

Sensitivity to sample 
sizes

More robust to differences in sample sizes 
within groups

Sample sizes within groups should be 
approximately equal
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tions of caribou that lived in landscapes with low jack 
pine cover. This is a marginal or population-specific 
approach because it addresses how the independent 
variable, jack pine cover, affects habitat selection 
across a population.

An equivalent conditional question would be, “how 
would a typical caribou change its habitat use if its 
environment changed from having high jack pine 
cover to relatively little jack pine cover?” This type 
of study might be designed to compare whether indi-
viduals changed their habitat selection if their land-
scape changed from one of high jack pine cover to 
low jack pine cover through forestry activities. This 
is a conditional or subject-specific approach because 
it addresses how the independent variable, jack pine 
cover, affects habitat selection of a typical individual.

Again, these questions are different and address 
different management issues. The marginal approach 
might be more appropriate for trying to understand 
effects of habitat on the population of interest; for 
example, for the development of population recovery 
plans. In such cases, the interest is on how an entire 
population will respond to management. The condi-
tional approach might be more appropriate if there 
is interest in how future changes in an environment 
might affect a typical caribou; for example, if evalu-
ating the potential impact of future forestry activi-
ties on individuals of a population. Regardless, we 
emphasize that this decision is important because it 
will change the interpretation of the parameter esti-
mates, will change the actual parameter estimates, 
and will change their apparent significance. For fur-
ther discussion about differences between marginal 
and conditional parameter estimates, and a useful 
graphical explanation, see Fitzmaurice et al. (2004). 

How are GEE and GLMM run on statistics programs?
An example of code that can be used for conducting 
a GLMM using Proc GLIMMIX in SAS is given in 
Appendix I. An example of code that can be used for 
conducting a GEE using Proc GENMOD in SAS is 
given in Appendix II. An example of code that can be 
used for conducting a GEE using the library geepack 
in R is given in Appendix III. Koper & Manseau 
(2009) provides a case study using GLMM and GEE 
on woodland caribou GPS relocation data.

Model validation
What is model validation?
Model validation allows us to determine how well 
a dataset, which is collected from a sample of the 
population of interest, predicts habitat selection by 
the population from which the sample is drawn. A 

common approach for validating resource selection 
functions is to use k-fold cross validation (Boyce et al., 
2002). An important benefit of this approach is that 
it may be used with any resource selection function, 
regardless of the statistical approach used to develop 
that function. Therefore, it can be applied to models 
developed using both GLMMs and GEEs. 

Why is model validation important?
It allows us to determine the trustworthiness of 
models.

How are models validated using k-fold cross validation?
k-fold cross validation starts by separating the data 
set into bins (a number of different groups, say k = 
10 for this example). A model is developed using all 
of the data except data from a single bin. Then the fit 
of the data from the withheld bin is evaluated to the 
model developed from the other data. This compari-
son produces a correlation coefficient, r. 

This process is repeated, withholding data from 
one bin at a time, until each bin has been withheld 
once. This produces k correlation coefficients which 
are then averaged. The idea behind this approach is 
that it gives us the opportunity to evaluate the fit of 
each model using data that are independent of the 
data used to develop the model. 

How are bins selected for the k-fold cross validation?
There are several ways in which data can be sepa-
rated into bins for these comparisons, each of which 
produces different results. With marginal popula-
tion estimates, the interest is in predicting habitat 
selection of other animals in the population, using 
data from just a few individuals. Therefore, to evalu-
ate predictive capacity of marginal models, models 
should be developed by withholding all of the data 
from one or two individuals at a time, and then 
evaluating how the models developed using the 
remaining animals to predict habitat selection by 
those animals (Koper & Manseau, 2009).

At this point, however, we diverge slightly from 
the recommendations we provided in Koper & Man-
seau (2009). Previously, we argued that for condi-
tional models, we should withhold a portion of the 
data from each animal, develop models using all of 
the remaining data, and then test model fit using 
the withheld data (Koper & Manseau, 2009). This 
is still appropriate if the interest is in predicting 
habitat selection by the specific individuals surveyed, 
for example, if managers are interested in predicting 
effects of future management on these animals. How-
ever, conditional models can also be used to predict 
habitat selection of a typical animal; in that case, the 
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interest is still in generalizing results to other ani-
mals in the population of interest. We note that this 
is not the same as predicting the effects of habitat on 
a population overall, but instead still focuses on the 
habitat selection of individuals; however, that might 
include the habitat selection of individuals from out-
side of the study sample. If that is the purpose of the 
conditional model, then we recommend that the user 
should follow the process recommended for marginal 
models; bins should be developed by withholding all 
the data from one or two animals, and then evaluat-
ing how well the models predict the habitat selection 
of those animals.

Like any statistical model, k-fold cross validation 
has some drawbacks. It is often misused, most com-
monly by withholding data from each individual in 
the data set, instead of withholding all the data from 
certain individuals. Further, the comparison between 
model predictions and the binned data gives only a 
coarse estimate of model fit. Apparent fit can change 
with number of bins, which is determined arbitrar-
ily. Finally, there are no guidelines to indicate what 
threshold of r represents a “good” fit of the model 
(Pearce & Boyce, 2006). While k-fold cross valida-
tion remains an important tool in model validation, 
improvements are likely to continue with time.

Summary: using GLMMs and GEEs to 
develop RSFs using telemetry data
Both generalized estimating equations and general-
ized linear mixed models can be used to develop 
resource selection functions that are robust to the 
lack of independence among numerous locations col-
lected from individual animals, if they are used in 
conjunction with empirical standard errors. The deci-
sion of which approach to apply should depend on 
whether a marginal or conditional approach should 
be taken, which in turn depends on the research or 
management goals. Following the development of the 
RSF, k-fold cross validation can be useful for model 
validation; usually this should be conducted by with-
holding all data collected from individual animals, 
developing RSFs with the remaining animals, and 
then comparing these models against the data from 
the withheld animals. 
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Appendices

Appendix I
SAS script for generalized linear mixed-effects mod-
el, annotated. The SAS script uses the procedure, 
“GLIMMIX”.

proc sort data = YOURNAME;
by GROUPINGVARIABLE;
run;

* It is necessary for mixed model data to be ordered 
fi rst by the grouping variable. As such, it is good 
practices to include a proc sort script prior to any 
GLMM, to be sure that data are sorted by group prior 
to the analysis. For RSFs, grouping variable would 
usually be caribou ID;

TITLE1 ‘GLIMMIX model’;
proc glimmix data = YOURNAME empirical;

* This ensures that the standard errors provided are 
empirical standard errors;

class GROUPINGVARIABLE INDEPENDENT1 
INDEPENDENT2 INDEPENDENT3;

*Above includes all categorical variables;

model RESPONSE = INDEPENDENT1 INDE-
PENDENT2 INDEPENDENT3 /solution ddfm  = 
betwithin dist = binomial link = logit CL;

* RESPONSE is the name of the column with the 
response variables (1s and 0s), other variables are the 
independent variables of interest. ddfm = changes 
the way that degrees of freedom are calculated. Be-
twithin stands for Between – Within, the most in-
tuitive method of calculating standard errors. An 
alternative sometimes preferred by statisticians is 

Satterthwaite, ddfm = SATTERTH.
random intercept /subject  = GROUPINGVARI-
ABLE TYPE = vc;
nloptions tech = nrridg;

*uses newton-raphson with ridging optimization 
technique, previous line may not be necessary for 
many data sets;
Title ‘Glimmix model’;
output out = Glimmixconditional pred = p Pearson = 
PEARSRESID UCL = UPPER LCL = LOWER;

*creates an output fi le with residuals, which can be 
analyzed in SAS or exported to Excel for further ex-
amination;
Run;

SAS model for generalized linear mixed-effects mod-
el, without annotation

proc sort data = YOURNAME;
by GROUPINGVARIABLE;
run;

TITLE1 ‘GLIMMIX model’;
proc glimmix data = YOURNAME empirical;
class GROUPINGVARIABLE INDEPENDENT1 
INDEPENDENT2 INDEPENDENT3;
model RESPONSE = INDEPENDENT1 INDE-
PENDENT2 INDEPENDENT3 /solution ddfm  = 
betwithin dist = binomial link = logit CL;
random intercept /subject  = GROUPINGVARI-
ABLE TYPE = vc;
Title ‘Glimmix model’;
output out  = Glimmixconditional pred  = p Pear-
son = PEARSRESID UCL = UPPER LCL = LOW-
ER;
Run;
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Appendix II

SAS script for developing generalized linear model 
with generalized estimating equation, annotated. 
The SAS code uses the procedure, “GENMOD”

proc sort data = YOURNAME;

by GROUPINGVARIABLE;
run;

* It is necessary for mixed model data to be ordered 
fi rst by the grouping variable. As such, it is good 
practices to include a proc sort script prior to any 
GLMM, to be sure that data are sorted by group prior 
to the analysis. For RSFs, grouping variable would 
usually be caribou ID;

TITLE1 ‘GEE model’;
proc genmod data = YOURNAME descending;

*descending command ensures that used habitat is 
compared with available habitat, rather than the re-
verse. By including “descending”, this ensures that 
positive parameter estimates indicate that habitat is 
selected, while negative parameter estimates indicate 
that habitat is avoided;
class GROUPINGVARIABLE INDEPENDENT1 
INDEPENDENT2 INDEPENDENT3;
*Above includes all categorical variables;

model RESPONSE = INDEPENDENT1 INDE-
PENDENT2 INDEPENDENT3 / dist = binomial 
corrb;

* RESPONSE is the name of the column with the 
response variables (1s and 0s), other variables are the 
independent variables of interest;
repeated subject = GROUPINGVARIABLE / corr = 
CS modelse;

*corr = indicates the correlation structured desired 
(Independent = IND, Compound Symmetric = CS, 
Autoregressive = AR(1). Model SE will produce both 
model and empirical standard errors, so that the ratio 
of SEE to SEM can be compared to evaluate model fi t;
output out  = RESIDS predicted  = inverselogit re-
schi = pearsresid stdreschi = stpearsresid STDXBE-
TA = stdxbeta xbeta = logit;
Run;

SAS script for developing generalized linear model 
with generalized estimating equation, without an-
notation

proc sort data = YOURNAME;
by GROUPINGVARIABLE;
run;

TITLE1 ‘GEE model’;
proc genmod data = YOURNAME descending;
class GROUPINGVARIABLE INDEPENDENT1 
INDEPENDENT2 INDEPENDENT3;
model RESPONSE = INDEPENDENT1 INDE-
PENDENT2 INDEPENDENT3 INDEPEND-
ENT4 / dist = binomial corrb; [  ]
repeated subject = GROUPINGVARIABLE / corr = 
CS modelse; […]
output out  = RESIDS predicted  = inverselogit re-
schi = pearsresid stdreschi = stpearsresid STDXBE-
TA = stdxbeta xbeta = logit; […]
Run;

Appendix III

R script for developing generalized linear model 
with generalized estimating equation, annotated. 
The R script uses the library “geepack” (R code from 
Dobson & Barnett 2008).

>geeind<-geeglm (RESPONSE ~ INDEPEND-
ENT1 INDEPENDENT2 INDEPENDENT3, 

# RESPONSE is the name of the column with the 
response variables (1s and 0s), other variables are the 
independent variables of interest;

family  = binomial, data  = YOURNAME, id  = 
GROUPINGVARIABLE, wave = time, corst =”in-
dependence”)

#corst = indicates the correlation structured desired 
(Independent = independence, Compound Symmet-
ric = exchangeable, Autoregressive = AR1)

R script for developing generalized linear model 
with generalized estimating equation, withouth an-
notation.

>geeind<-geeglm (RESPONSE ~ INDEPEND-
ENT1 INDEPENDENT2 INDEPENDENT3, fam-
ily = binomial,

data  = YOURNAME, id  = GROUPINGVARIA-
BLE, wave = time, corst =”independence”)


