#### Brief Communication

# Differences in parasite diversity, prevalence, and intensity assessed through analyses of fecal samples from two West Greenland caribou populations

#### Jillian Steele<sup>1</sup>, Christine Cuyler<sup>2</sup>, Karin Orsel<sup>1</sup>& Susan J. Kutz<sup>1</sup>

- <sup>1</sup> Faculty of Veterinary Medicine, University of Calgary, HSC 2530 2500 University Drive NW, Calgary, AB T2N 1N4, Canad (Corresponding author: jfsteele@ucalgary.ca).
- <sup>2</sup> Greenland Institute of Natural Resources, P.O. Box 570, 3900 Nuuk, Greenland.

Key words: caribou; Eimeria; fecal analysis; Greenland; Marshallagia; nematodirine; Ostertagia; parasites; Rangifer; Teladorsagia.

Rangifer, 33, Special Issue No. 21, 2013: 177–181

#### Introduction

Many northern communities depend on caribou (Rangifer tarandus groenlandicus) as a dietary staple and for their contributions to northern economies and cultures. In Rangifer sp., experimental removal of gastrointestinal helminth parasites has been associated with increased fat reserves and pregnancy rates, and it is generally accepted that the effects of these parasites on individuals can influence population dynamics and herd sustainability (Albon et al., 2002; Stien et al., 2002).

#### Study Area

West Greenland is home to several populations of caribou, with Akia-Maniitsoq (AM = 24, 000) and Kangerlussuaq-Sisimiut (KS = 98, 300) the two largest (Cuyler et al., 2011). The

ranges of these two populations extend eastwest from the Greenland ice cap to the coast and from 62°N to 68°N, with KS the more northerly. They are isolated from other caribou populations by extensive fjord systems and from each other by the Sukkertoppen icecap, although movement between herds is theoretically possible (Cuyler et al., 2011). While AM and KS are genetically related (Jepsen et al., 2002), have adjacent ranges and lack predators (Melgaard, 1986), they are unique in their exposure to other ungulate species through human-mediated translocations and importations. The KS population shares its range with muskoxen (Ovibos moschatus wardi) translocated from east Greenland (Pedersen & Aastrup, 2000), whereas AM has seen transient introductions of cattle, horses, sheep, and goats

(Norlund, 1936; Rose et al., 1984), and the importation of semi-domestic Norwegian reindeer (R. t. tarandus) into a neighbouring range (Cuyler, 1999). The presence of introduced ungulates may have influenced parasite diversity in these native caribou populations.

Gastrointestinal parasite diversity is poorly defined for animals in west Greenland, with the two previous studies focusing solely on ungulates from the KS range. Raundrup (2005) sampled muskoxen from this area and reported the presence of 'trichostrongyle' eggs and larvae which she attributes to Ostertagia (Teladorsagia) circumcincta, however she provides no morphological or molecular data to support this. Korsholm and Olesen (1993) did a smaller, but more detailed study not only on muskoxen (n =5), but also caribou (n = 5) from the KS range. In caribou, these authors reported the abomasal nematodes Teladorsagia circumcincta and Marshallagia marshalli, as well as Eimeria oocysts. Along with these parasites, muskoxen were also positive for Nematodirella longissimespiculata, Nematodirus helvetianus, and Moniezia expansa. To date, no similar work has been done for AM, although warbles (Hypoderma tarandi) and nose bots (Cephenemyia trompe) have been evaluated in both populations (Cuyler et al., 2012). The purpose of our work was to do a fecal survey of gastrointestinal parasites in the AM and KS caribou populations. We expected that, due to their common ancestry and neighboring ranges, there would be no differences between parasite species present in the two populations.

### Methods

Collections for this study took place during International Polar Year as part of an initiative by the CircumArctic Rangifer Monitoring and Assessment (CARMA) network (Kutz et al., in press). Adult female caribou ( $\geq$  3 years), subadults (1-2 years) and their calves-at-heel (<1 year) were collected opportunistically through scientific hunts from Mar. 29 - Apr. 13, 2008 (AM) and Mar. 3 – 17, 2009 (KS). Rectal fecal samples were collected, frozen, and transported to the University of Calgary where they were processed using a modified Wisconsin double centrifugation-sugar flotation technique (Hoar et al., 2009). Eggs and oocysts were identified to family or genus based on morphology (Foreyt, 2001). Eggs identified as having typical 'strongyle-egg' morphology can belong to a number of different genera, however in arctic and subarctic environments the abomasal nematodes Ostertagia gruehneri and Teladorsagia boreoarcticus are the most common in Rangifer sp. (Hoberg et al., 2001; Kutz et al., 2012). Also producing 'strongyle-type' eggs, Teladorsagia circumcincta has been previously reported in KS by Korsholm & Olesen (1993). This identification should be revisited as it preceded the description of the morphologically similar T. boreoarcticus and it is now recognised that most descriptions of T. circumcincta in arctic hosts are mistaken (Hoberg et al., 1999; Kutz et al., 2012).

### Results

We observed differences between AM and KS in regards to the diversity of parasites present, prevalence (percent of samples positive), and intensity (eggs per gram feces from positive samples) (Table 1). 'Strongyle-type', Nematodirinae and Anoplocephalidae eggs, and Eimeria oocysts were found in both populations. Marshallagia spp. eggs were common in KS samples, but absent entirely from AM.

Prevalence and intensity of 'strongyle-type' eggs were much higher in AM than KS, which may reflect differences in species diversity, host genetics or health status, timing of sampling, or sampling years (Baker et al., 2001; Baker et al., 1998; Dunn, 1969; Irvine et al., 2001). Nematodirinae eggs, produced by the small intestinal nematodes Nematodirus spp. or Nematodirella spp., were found in both populations, but with

Table 1. Prevalence [% positive samples] and intensity [EPG/OPG; Median (Min. – Max.)] of gastrointestinal parasite eggs and oocysts of fecal samples from animals of the Akia-Maniitsoq and Kangerlussuaq-Sisimiut caribou populations. Significant differences between herds ( $p \le 0.05$ ), within an age class, are indicated by \*, Fisher's Exact (prevalence) or Wilcoxon (intensity) tests.

|                     | п       | Strongyle-type |                                 | Marshallagia spp. |               | Nematodirinae |               | Anoplocephalidae |                                 | Eimeria spp. |             |
|---------------------|---------|----------------|---------------------------------|-------------------|---------------|---------------|---------------|------------------|---------------------------------|--------------|-------------|
| Herd                |         | Prevale        | nce Intensity                   | Prevalence        | Intensity     | Prevale       | nce Intensity | Preva            | lence Intensity                 | Prevalence   | Intensity   |
| Akia-Maniitsoq      | 47      |                |                                 |                   |               |               |               |                  |                                 |              |             |
| (2008)<br>Calves    | 47<br>6 | 83.3*          | 5.0 (0.2-11.7)*                 | 0.0*              | N/A           | 33.3          | 0.5 (0.2-0.8) | 33.3             | 35.3 (18.9-51.6)                | 0.0          | N/A         |
| Subadults<br>Adults | 7<br>34 | 71.4*<br>50.0* | 1.2 (0.2-2.5)<br>0.8 (0.2-2.8)* | 0.0*<br>0.0*      | N/A<br>N/A    | 0.0<br>0.0*   | N/A<br>N/A    | 28.6<br>5.9      | 8.4 (1.5-15.4)<br>3.5 (0.3-6.8) | 0.0<br>2.9   | N/A<br>32.1 |
| Kangerlussuaq-      |         |                |                                 |                   |               |               |               |                  |                                 |              |             |
| Sisimiut (2009)     | 48      |                |                                 |                   |               |               |               |                  |                                 |              |             |
| Calves              | 9       | 22.2*          | 0.3 (0.3-0.3)*                  | 55.6* (           | ).5 (0.3-1.0) | 44.4          | 1.8 (0.5-4.4) | 22.2             | 30.5 (13.6-47.4)                | 0.0          | N/A         |
| Subadults           | 4       | 0.0*           | N/A                             | 75.0* (           | ).8 (0.3-1.3) | 50.0          | 0.8 (0.5-1.0) | 0.0              | N/A                             | 0.0          | N/A         |
| Adults              | 35      | 11.4*          | 0.3 (0.3-0.5)*                  | 62.9* (           | ).5 (0.2-1.0) | 54.3*         | 0.3 (0.2-2.2) | 11.4             | 9.5 (2.3-42.0)                  | 2.9          | 0.3         |

very different patterns of distribution. In AM, these eggs were only present in samples from calves, as is expected for ruminants, however they were common in all age classes of KS. This suggests that there may be different species of nematodirines present in these two populations, which requires further investigation.

The presence of *Marshallagia* spp. in KS, but not AM, is likely the result of spill-over from introduced muskoxen (Pedersen & Aastrup, 2000), however the effects of climatic conditions cannot be discounted. Marshallagia spp. in particular is more commonly found in arid regions (Meradi et al., 2011), and the drier climate of the KS region may be more suitable for this parasite than the AM range (Tamstorf, 2001). At least two varieties of Eimeria oocysts were present in each population, possibly E. hreindyria, E. mayeri, or E. rangiferis as these have all been reported previously in *Rangifer* sp. (Guðmundsdóttir, 2006). Differences in prevalence and intensity of *Eimeria* spp. between the populations were non-significant, which may be a true result, or be due to our small sample size. This may also apply to our Anoplocephalidae results.

### Conclusions

Our research has demonstrated that, although the AM and KS caribou populations are closely related genetically (Jepsen et al., 2002) and geographically, there are significant qualitative (species diversity) and quantitative (prevalence, intensity, and distribution across age classes) differences in their parasites. Identification of parasites in this study was limited to morphological examination of eggs and, as such, we are only able to report to genus or family level. Species-level identifications, currently underway, are expected to reveal greater differences in diversity and provide deeper insight into the influence of historical and contemporary factors on the parasite community of these caribou populations.

This work was supported by the Greenland Institute of Natural Resources, Environment Canada International Polar Year funding, NSERC Special Research Opportunities Grant, and Alberta Innovates. Stipend support is provided by the Faculty of Veterinary Medicine, University of Calgary. We thank the following individuals for their assistance with this project: Amanda Reith, Dean Brown, Jesse Invik,

& Jayninn Yue (University of Calgary); Sofie Jeremiassen & Josephine Nymand (Greenland Institute of Natural Resources); and Hans Mølgaard & Vittus Nielsen (Greenland Regional Hunting Officers).

## References

- Albon, S.D., Stien, A., Irvine, R.J., Langvatn, R., Ropstad, E. & Halvorsen, O. 2002. The role of parasites in the dynamics of a reindeer population. — Proceedings of the Royal Society Biological Sciences Series B, 269(1500): 1625-1632.
- Baker, R.L., Audho, J.O., Aduda, E.O. & Thorpe, W. 2001. Genetic resistance to gastro-intestinal nematode parasites in Galla and Small East African goats in the sub-humid tropics. — British Society of Animal Science, 73(1): 61-70.
- Baker, R.L., Mwamachi, D.M., Audho, J.O., Aduda, E.O. & Thorpe, W. 1998. Resistance of Galla and Small East African goats in the sub-humid tropics to gastrointestinal nematode infections and the peri-parturient rise in faecal egg counts. — Veterinary Parasitology, 79(1): 53-64.
- Cuyler, C. 1999. Success and failure of reindeer herding in Greenland. - Rangifer, 19(4): 81-92.
- Cuyler, C., Rosing, M., Mølgaard, H., Heinrich, R. & Raundrup, K. 2011. Status of two West Greenland caribou populations 2010 (revised 2012); 1) Kangerlussuaq-Sisimiut, 2) Akia-Maniitsoq. Greenland Institute of Natural Resouces.
- Cuyler, C., White, R., Lewis, K., Soulliere, C., Gunn, A., Russell, D. & Daniel, C. 2012. Are warbles and bots related to reproductive status in west Greenland caribou? 13th North American Caribou Workshop. 25-28 October 2010, Winnipeg, Manitoba, Canada. In Rangifer (ed. Haugerud, R.E.), Special Issue No. 20: 245-257.
- **Dunn, A.M.** 1969. Veterinary helminthology,

William heinemann medical books ltd., london. pp.

- Foreyt, W.J. 2001. Veterinary Parasitology: Reference Manual, 5th edition. Blackwell Publishing, Danvers, MA. 235pp.
- Guðmundsdóttir, B. 2006. Parasites of reindeer (Rangifer tarandus) in Iceland. M.Sc. Thesis, University of Iceland. 100pp.
- Hoar, B., Oakley, M., Farnell, R. & Kutz, S.J. 2009. Biodiversity and springtime patterns of egg production and development for parasites of the Chisana Caribou herd, Yukon Territory, Canada. — Rangifer, 29(1): 25-37.
- Hoberg, E.P., Kocan, A.A. & Rickard, L.G. 2001. Gastrointestinal strongyles in wild ruminants. In Parasitic Diseases of Wild Mammals (eds. Samuel, W.M., Pybus, M.J., and Kocan, A.A.), Iowa State University Press, Ames. p. 193-599.
- Hoberg, E.P., Monsen, K.J., Kutz, S.J. & Blouin, M.S. 1999. Structure, biodiversity, and historical biogeography of nematode faunas in Holarctic ruminants: Morphological and molecular diagnoses for Teladorsagia boreoarcticus n. sp. (Nematoda: Ostertagiinae), a dimorphic cryptic species in Muskoxen (Ovibos moschatus). — Journal of Parasitology, 85(5): 910-934.
- Irvine, R.J., Stien, A., Dallas, J.F., Halvorsen, O., Langvatn, R. & Albon, S.D. 2001. Contrasting regulation of fecundity in two abomasal nematodes of Svalbard reindeer (Rangifer tarandus platyrhynchus). — Parasitology, 122(6): 673-681.
- Jepsen, B.I., Siegismund, H.R. & Fredholm, M. 2002. Population genetics of the native caribou (Rangifer tarandus groenlandicus) and the semi-domestic reindeer (Rangifer tarandus tarandus) in Southwestern Greenland: Evidence of introgression. - Conservation Genetics, 3(4): 401-409.
- Korsholm, H. & Olesen, C.R. 1993. Preliminary investigations on the parasite burden
- 180 This journal is published under the terms of the Creative Commons Attribution 3.0 Unported License Editor in Chief: Birgitta Ahman, Technical Editor Eva Wiklund and Graphic Design: Bertil Larsson, www.rangifer.no

sis, Danmarks Miljøundersøgelser. 237pp.

and distribution of endoparasite species of muskox (Ovibos moschatus) and caribou (Rangifer tarandus groenlandicus) in West Greenland. — *Rangifer*, 13(4): 185-189.

- Kutz, S.J., Ducrocq, J., Cuyler, C., Elkin, B., Gunn, A., Kolpashikov, L., Russell, D.E. & White, R.G. In press. Standardized monitoring of Rangifer health during International Polar Year. — Rangifer, XX.
- Kutz, S.J., Ducrocq, J., Verocai, G.G., Hoar, B.M., Colwell, D.D., Beckmen, K.B., Polley, L., Elkin, B.T. & Hoberg, E.P. 2012. Parasites in ungulates of Arctic North America and Greenland: A view of contemporary diversity, ecology, and impact in a world under change. In Advances in Parasitology, Vol. Volume 79 (eds. Rollinson, D., and Hay, S.I.), Academic Press. p. 99-252.
- Melgaard, M. 1986. The Greenland Caribou -Zoogeography, Taxonomy, and Population Dynamics, Kommissionen for Videnskabelige Undersøgelser i Grønland, Copenhagen. 88pp.
- Meradi, S., Bentounsi, B., Zouyed, I. & Cabaret, J. 2011. The steppe species of gastrointestinal nematodes of small ruminants, with a focus on Marshallagia: Climate as a key determinant. — Parasite, 18(3): 261-269.
- Pedersen, C.B. & Aastrup, P. 2000. Muskoxen in Angujaartorfiup Nunaa, West Greenland: Monitoring, spatial distribution, population growth, and sustainable harvest. - Arctic, 53(1): 18-26.
- Raundrup, K. 2005. Muskoxen Living with or without parasites. M.Sc. Thesis, University of Copenhagen. 54pp.
- Stien, A., Irvine, R.J., Ropstad, E., Halvorsen, O., Langvatn, R. & Albon, S.D. 2002. The impact of gastrointestinal nematodes on wild reindeer: Experimental and cross-sectional studies. — Journal of Animal Ecology, 71(6): 937-945.
- Tamstorf, M.P. 2001. Satellitbaseret vegetationskortlægning i Vestgrønland. Ph.D. The-