Proteolytic enzyme and inhibitor levels in reindeer (*Rangifer tarandus tarandus* L.) vs. bovine *longissimus* muscle, as they relate to ageing rate and response

V.M.H. Barnier1*, E. Wiklund2, A. van Dijk1, F.J.M. Smulders3 & G. Malmfors2

1 Universiteit Utrecht, Department of the Science of Food of Animal Origin, P.O. Box 80 175, 3508 TD Utrecht, The Netherlands (Barnier@vets.vet.uu.nl).
2 Swedish University of Agricultural Sciences, Department of Food Science, P.O. Box 7051, 750 07 Uppsala, Sweden.
3 Institute for Meat Hygiene, Meat Technology and Food Science, Veterinary Medical University of Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.

* corresponding author.

Abstract: Eight reindeer bulls (age 1.5 years) and six Friesian bulls (age 1.5 years) were included in the study for comparison of tenderness. The reindeer were slaughtered at a commercial reindeer slaughter plant in northern Sweden and the Friesian bulls at a commercial slaughter plant in The Netherlands. Samples for determination of calpain/calpastatin activity were taken from the *M. longissimus* (LO) within 1 h post mortem (p.m.), and at various times p.m. pH and temperature were registered in LO; ultimate pH values were measured at 24 h p.m. for beef and at 35 h p.m. for reindeer. At day 1 p.m., samples of LO from both carcass sides were excised, divided in two parts, vacuum packaged and stored at 0-2 °C. One part of each muscle was randomly sampled at 1, 3, 7 and 14 days p.m. for determination of shear force, proteolytic enzyme activity, myofibrillar protein degradation, collagen content and heat solubility. pH and temperature fall was faster in reindeer than in beef. Collagen content in reindeer muscle was found to be low but collagen was 4 times less soluble as compared with beef. Reindeer LO was found to be extremely tender, at 3 days p.m. shear force values were only 2-3 kg/cm² (8-12 kg/cm² for beef LO). In reindeer meat, the µ-calpain levels dropped to about 55% within 3 days. Troponin T and 30 kDa values were not related to changes in tenderness in reindeer meat. Cathepsin activities in reindeer were up to ten times higher than in beef. As in beef, cathepsin B+L levels in reindeer increased during storage, which is probably associated with a decrease in cystatin-like inhibitor levels.

Key words: collagen, meat quality, proteases, shear force.

Introduction

As reviewed by Ouali (1990) and Smulders et al. (1991), meat tenderisation is a variable process depending on a number of biological factors (e.g. species, age, sex and muscle type) and environmental factors (nutrition, ante mortem stress, slaughter- and chilling conditions and ageing).

Modern reindeer management often includes various stressful pre-slaughter conditions, such as gathering, herding and long distance animal transport. These conditions can promote the occurrence of DFD (Dark, Firm, Dry) meat (Wiklund et al., 1995; 1996a; 1996b; 1997a). The incidence of DFD in reindeer meat has been measured in Sweden (DFD...
Material and methods

Reindeer
In Sweden, eight reindeer bulls (age 1.5 years, average carcass weight 33 kg with standard deviation $s = 13$ kg), were slaughtered at a commercial slaughter plant. The animals had been exposed to gathering and herding to a corral, a selection procedure, road transport over a distance of about 400 km (i.e. 5-6 hours driving) and overnight rest before slaughter with free access to hay and water. The animals were stunned with a captive bolt, bled and skinned. The pH and temperature in the centre of M. longissimus of the righthand carcass side, were measured at 1, 3, 5 and 35 h post mortem (p.m.). Temperature was measured with a digital thermometer (Ama-digit ad 40 th, Amarell Electronic, Germany) and pH values were measured with a portable pH meter (Portamess 651-2, Knick Elektronische Messgeräte GmbH & Co, Germany) equipped with a polymere electrode (Xerolyt, lot 406-M6-DXK S7/25, Ingold, Germany). Samples for determination of calpain/calpastatin activity were taken within 1 h p.m. At 1 day p.m., samples of M. longissimus from the lefthand carcass side were excised, divided in four parts, vacuum packaged and stored at 0-2 °C. At random, one part of each muscle was sampled at 1, 3, 7 and 14 days p.m. for determination of shear force, proteolytic enzyme activity, myofibrillar protein degradation, collagen content and heat-solubility. Samples for determination of calpain/calpastatin and cystatin-like inhibitor activities were frozen in liquid nitrogen (-196 °C) and stored at -80 °C until determination.

Shear force
Warner Bratzler shear force was determined on samples heated in polyethylene bags in a waterbath at 75 °C until a core temperature of 70 °C was reached, whereafter they were chilled in running tap water for 40 min (Boccard et al., 1981). Ten rectangular samples of 1 cm2 cross section were cut out from each cooked sample, parallel to the muscle fibre direction. Shear force was measured using a draw bench (Adamel Lhomargy, Division d'Instruments S.A. Paris, France) equipped with a Warner Bratzler shearing device. A triangular blade (1.2 mm thick) was used at a crosshead speed of 298 mm/min.

Determination of calpain and calpastatin activity
Separation of calpains and calpastatin was performed according to Etherington et al. (1987) with
minor modifications as described by Geesink (1993).

SDS gel electrophoresis and densitometry
Myofibrils were prepared according to the method of Ouali et al. (1983). Degradation of myofibrillar proteins was assessed by means of SDS-PAGE according to Greaser et al. (1983) on a 12.5% acrylamide separating gel. The intensity of the protein bands was measured with a LKB Ultrascan XL Enhanced Laser Densitometer.

Determination of collagen content and heat solubility
The extraction of heat soluble collagen was performed according to Hill (1966) and acid hydrolysis according to Bauer (1991) with a microwave oven. Hydroxyproline was measured according to the method of Stegemann & Stalder (1967) with minor modifications described by Barnier (1995).

Cathepsin B+L and their inhibitors
In reindeer meat, determination of total cathepsin B+L activity was performed on frozen meat according to Etherington et al. (1987). In beef the determination of free cathepsin B+L activity was performed on fresh meat samples according to Wu et al. (1985), subsequently aliquots were frozen in liquid nitrogen (-196 °C) and stored at -80 °C. Muscle samples were prepared according to Bige et al. (1985) to extract the cysteine proteinase inhibitors, omitting the ultimate purification step. The amount of cystatin-like inhibitors was determined using a papain active-site titration based on the method of Anastasi et al. (1983) described by Barnier (1995).

Statistical analyses
Significance of difference between ageing times was tested with a one-way analysis of variance (SPSS/PC+, Chicago, IL).

Results and discussion

pH, temperature, collagen content and heat solubility
Due to their low dressed carcass weights (Table 1), the temperature fall was relatively fast in reindeer (Fig. 1b). The pH fall was also rather fast in reindeer in comparison with beef (Fig. 1a). The present results are in good agreement with earlier studies, where consistently a rapid pH fall in reindeer meat was found (Wiklund et al., 1995; Gundersen & Nummedal, 1996).

Collagen content in reindeer muscle was rather low but the collagen was quite insoluble (4 times less soluble as compared with beef, Table 1).

Tenderness, proteolysis and myofibrillar protein degradation
In the present study, reindeer *longissimus* muscle was found to be extremely tender. As early as 3 days post mortem, shear force values were only 2 to 3 kg/cm², which was very low compared with measured shear force values in beef (values around 10 kg/cm²) after the same ageing time (Table 2). The speed of p.m.
proteolysis in reindeer muscle appears to be very fast, therefore. Whereas initial values of \(\mu \)-calpain assessed in reindeer meat in a pilot experiment on very early p.m. samples (20 min p.m.) were in the 42 - 79 unit range (\(n = 6 \)), these levels dropped to about 55% within 3 days (Fig. 2a). As \(\mu \)-calpain, once activated, gradually loses its activity through an autolytic process, a decrease in \(\mu \)-calpain activity would mean that the enzyme has been active and possibly caused tenderisation. During p.m. storage, muscle calpastatin levels were lower in reindeer than beef (Fig. 2b). Assuming a similar enzyme autolysis/activation mechanism for both beef and reindeer, this finding suggests that most of the proteolysis in reindeer meat has already taken place within the first few days after slaughter.

Degradation of troponin T during p.m. storage and consequent appearance of a 30 kDa breakdown product (Ho et al., 1994) have been reported as an indicator of beef tenderness (Uytterhaegen et al., 1992). Surprisingly, troponin T and 30 kDa values (Table 2), following a similar pattern as in beef, are difficult to relate to tenderness changes in reindeer meat in the present study.

Remarkably, cathepsin activities in reindeer meat in the present study were up to ten times higher than in beef (Fig. 3). As in beef (Barnier et al., 1993; Barnier, 1995), reindeer cathepsin B+L levels increased during storage of the meat, which is probably associated with a decrease in cystatin levels.
Fig. 4. Cystatin-like inhibitor levels (µmol/g muscle) of beef (n = 6) and reindeer (n = 8) M. longissimus (means and standard deviations).

(Fig. 4). The results of the present study support this hypothesis and are consistent with the latter author's data on beef.

Conclusions
In reindeer longissimus muscle ultimate tenderness was almost reached at 3 days p.m. Reindeer meat samples had much higher proteolytic enzyme activity and lower inhibitor levels as compared with beef. One should be cautious, however, to extrapolate muscle physiological observations in beef to other ruminant species. As no relationship between the degradation of troponin T and tenderness (shear force) was found in reindeer meat in the present study, further studies on the degradation pattern of high molecular weight proteins and the changes occurring at an ultrastructural level during the post mortem tenderisation process are required. The observations made in the present experiment justify further muscle proteolytic enzyme- and tenderness studies in reindeer as this species might prove to be of interest for model studies of a comparative nature.

Acknowledgements
The authors thank the staff at 'Tottes slakt AB' in Harads and Gertrud Andersson for their assistance and cooperation in the collection of reindeer samples. We are also grateful to Philip Schippers and Mauro de Rosa for their invaluable assistance in the lab. Financial support for this work was provided by OECD (Organisation for Economic Co-operation and Development, Paris, France) within the programme 'Co-operative Research Project on Biological Resource Management', and also by the Swedish Council for Forestry and Agricultural research.

References

Rangifer, 19 (1), 1999

Manuscript received 7 December, 1998 accepted 20 April, 1999