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Abstract: The primary advantage of the standing age distribution of a population is that it can be sampled. 
Analysis of the age frequencies for estimates of survival rates and determinations of population status by life 
table construction depend heavily on assumption that require additional data to evaluate. The analysis of age 
structures for the George River (Messier et al. 1988) and Beverly (Thomas and Barry 1990a,b) caribou herd 
was reviewed. An alternativ method of estimating age specific survival rates was explored. The dependence of 
the life tables produced by the analysis of Messier et al. (1988) and Thomas and Barry (1990a, b) on tenuous 
and untestable assumptions regarding population growth rate over the life span of the oldest animals, stability 
of the standing age distribution, and constancy of life table parameters was emphasized. Although the life ta­
bles produced by Messier et al. (1988) for the George River herd and Thomas and Barry (1990a,b) for the 
Beverly herd are probably the best available for barren-ground caribou, they should be used with caution, 
particularly for management decisions. 
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Introduction 
The distribution of animals by age class (Stan­
ding Age Distribution) is one of the most com­
mon types of data available from harvested 
wildlife. The standing age distribution may be 
from a population that is stationary (i.e., neit­
her increasing or declining), increasing, or decli­
ning. The standing age distribution may be 
stable (which occurs when the rates of recruit­
ment and death have remained unchanged for a 
sufficient period) or unstable. For a given life 
table (i.e., a given set of age specific rates of rec­
ruitment and death) a single stable age distribu­
tion is defined. 

Life tables are usually given for females only. 
Age specific recruitment (mx) is only the num­
ber of females of age 0 produced per female of 
age x counted at the time of census. The time 
of census is not critical to defining the life ta­
ble, however the time of census must be the 
same for the estimate of survival rate. The stab­

le standing age distribution is defined for that 
time of census only. These rules are required to 
maintain an internally consistent life table. 

The recruitment schedule and standing age 
distribution can be estimated from field data 
that is easily obtained. When the standing age 
distribution is both stationary and stable, the 
age specific annual survival rates can be estima­
ted directly as the geometric mean rate of decli­
ne for age constant survival. Age specific survi­
val (px) for the stable and stationary case is just 
N x + , / N x . When the population is stable, but in­
creasing or declining, the estimate of survival 
rate must be corrected by the rate of popula­
tion growth (X): 

N x + 1 

If the survival rate is known from cohort esti­
mates (eg., radio telemetry) the standing age dis­
tribution may be compared to the expected 
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stable age distribution calculated from the survi­
val and recruitment schedules. The population 
growth rate at stable age distribution, and the 
population growth rate from the observed stan­
ding age distribution may be calculated. If the 
population growth rate is known from census 
estimates, and the population growth rate has 
remained constant, the age specific survival 
schedule may be calculated. 

Caughley (1977) notes the futility of recalcula­
ting the population growth rate from the recru­
itment and «corrected» survival schedule. N o 
matter what the recruitment schedule, and even 
if the standing age distribution is not stable, the 
assumed population growth rate correction wil l 
be recovered. Analysis of the standing age dis­
tribution for estimates of survival rates requires 
that the age distribution is stable, (i . e . , the po­
pulation growth rate known from census has 
been constant for the period of time specified 
by the maximum age). 

The age distributions described in Messier et 
d. (1988) and Thomas and Barry (1990a,b) have 
been used to develop life tables for the George 
River and Beverly caribou herds. The resulting 
life tables depend heavily on untested assump­
tions regarding the stability of age distributions, 
and the constancy and value of the populations 
growth rate. 

Methods 
The terminology used is taken from Caughley 
(1977) and Taylor and Carley (1988). At stable 
age distribution the relationship between the 
recruitment schedule (mx), the survivorship 
schedule (lx), and population growth rate (X) is 
given by the discrete form of the life table 
equation (Cole 1954): 

1= £ lxxmxxX"x (2) 

The relationship of the survivorship schedule 
to the survival rate schedule is: 

(3) 

where 10 is defined as 0. The relationship of the 
survivorshp schedule (lx) to the standing age dis­
tribution (Sx) is: 

l x = S x xX x (4) 

where: 
N x 

S,= — (5) 
N„ 

Rewriting equation 2 using the relationship in 
equation 4 yields: 

1= Y, SxxmxxXxxX" !< 

x - 0 

/hich reduces to: 

1 = £ S xxm x 

(6) 

(7) 

Cauchley (1977) warns against analysis for stan­
ding age distributions that begin with the as­
sumption that they are stable. Using the defini­
tions of Sx and m x , equation 7 may be rewritten 
as: 

1 = E ( N ' ) x ( N * ) 

- I 

No 

No, x 

N 0 

N x (8) 

where N 0 x is the number of age 0 females pro­
duced by females of age x. Equation 7 will al­
ways be true for any age distribution and any 
m x schedule, stable or unstable, biased or unbia­
sed. 

The relationship in equation 4 is true only 
for stable age distributions. However, any age 
distribution (stable or unstable, biased or unbia­
sed) can be corrected by some assumed popula­
tion growth rate. Substitution for Sx from equa­
tion 4 in equation 7 gives equation 2, the life 
table equation. In other words the l x schedule 
that results from the «correction» will , by defi­
nition, return the assumed population growth 
rate and initial standing age distribution as the 
stable age life table result (Caughley, 1977). 
This tautology does not test the stable age as­
sumption or the accuracy of the «correction» 
term (X). 

The relationship between the standing age dis­
tribution (Sx) and age specific survival rate (px) 
can be developed from equations 3 and 4: 

x-l 

n 1L (9) 

The value of <i> for the mature adult age stra­
ta is best determined by the Chapman-Robson 
truncated method (Chapman and Robson, 1960) 
when survival rates are age constant: 

N x + 1 p x 

* = = — (10) 
N . X 
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Table 1. The life table for the Georj ;e River carib ou herd as i developed by Messier et al. (1988). 

Age Frequency Recruitment 
rate 

Standing age 
distribution 

Corrected 
(X=1.117) 

Smoothed 

(x) (N x) ( m x ) (Sx) N X . X X N x Px S x-m x 

0 236.1 0 1.0 236.1 236.1 0.714 0 
1 138 0 .585 154.0 168.5 0.99 0 
2 156 0.06 .661 194.4 167.0 0.98 0.0397 
3 113 0.35 .478 157.2 163.0 0.96 0.1673 
4 94 0.40 .398 145.9 156.6 0.94 0.1592 
5 83 0.40 .352 143.9 147.9 0.93 0.1408 
6 65 0.40 .275 125.8 137.3 0.91 0.1100 
7 63 0.40 .267 136.1 125.0 0.89 0.1068 
8 57 0.40 .242 137.4 111.4 0.87 0.0986 
9 40 0.40 .169 107.6 96.6 0.84 0.0676 
10 24 0.40 .107 72.1 81.2 0.81 0.0428 
11 18 0.40 .076 60.4 65.4 0.76 0.0030 
12 12 0.40 .051 44.9 49.5 0.69 0.204 
13 7 0.40 .030 29.2 33.9 0.56 0.0120 
14 1 0.40 .004 4.7 18.8 0.24 0.0016 
15 4 0.40 .017 20.8 4.4 0.10 0.0680 

X = 1.117 1= 1.0 

Results 
The standing age distributions reported by Mes­
sier et al. (1988) and Thomas and Barry (1990a) 
were reported as stable age distributions with 
assumed population growth rates of 1.117 for 
the George River Herd and 1.0 for the Beverly 
Herd. Messier et al. (1988) used recruitment ra­
tes from other sources to develop a life table 
for the George River herd. The «natal i ty» rates 
reported by Thomas and Barry (1990b) for the 
Beverly herd may be taken as recruitment rates 
by considering age 0 to be unborn calves. 

The life Table for the George River herd is 
given in Table 1, and the life table for the Be­
verly herd is given in table 2. As described abo­
ve, life tables developed in this manner always 
return the assumed population growth rate as 
the stable age growth rate, and the observed 
standing age distribution as the stable age distri­
bution. The survival rate estimates are based on 
the assumption that the population growth rate 
has been constant over the time span embodied 
by the age distribution, that survival rates have 
not varied systematically, and that the age dis­
tribution was sampled without bias (Messier et 
al. 1988; Thomas and Barry 1990a,b). A George 
River life table was developed assuming the po­

pulation growth rate was 1.0 to illustrate 
Caughley's (1977) tautology of age distribution 
analysis (Table 3). Similarly, recruitment rates 
for the George River herd can be arbitrarily 
doubled and the «corrected» life table wil l still 
return the correction as the stable age popula­
tion growth rate (Table 4). 

Both Messier et al. (1988) and Thomas and 
Barry (1990a) used a linear regression to fit the 
quadratic equation to the age distribution data. 
Linear alternatives that assume constant age spe­
cific survival rates within a given age stratum 
(Figures 1 and 2) gave an equally good fit to 
the data. The linear approach suggested 2 age 
strata of caribou could be identified: «mature» 
(age 2-10) and «senescent» (age 11-16). The 
Chapman-Robson estimates for the 2 strata are 
given for both George River and Beverly herds 
(Table 5). The recruitment rates for senescent 
age classes did not appear to decline (Thomas 
and Barry, 1990b). 

Discussion 
The standing age distribution is a history of the 
population dynamics over the period embodied 
by the number of age categories. It is informa­
tion rich and easily measured. Age specific re-
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cruitment is also relatively straight-forward to 
measure. However, the information contained 
in the standing age distribution is not accessible 
without other information. As seen from the 
examples: stable and unstable; and biased and 
unbiased age distribution all give estimates of 
survival rates that are indiscernible. 

Constancy checks are possible when additio­
nal information is available. Caughley (1977) ar­
gues that survival and recruitment rates are age 
constant for adult females of most harvested 
species. The caribou age distribution data sug­
gests that the survival rates of senescent adult 
females are about 74% of mature animals. 
When survival rates of age strata are age con­
stant, the Chapman-Robson 4> (px/X), estima­
ted from a stable age distribution, gives the re­
lationship between survival rates and popula­
tion growht rate. When the survival rate of 
mature (x > a) females is age constant 
(Caughley 1977) equation 8 may be rewritten in 
a manner that is useful for testing the stable age 
assumption from available field data: 

a = age for first reproduction, 
w = final age class 
<t> = p x/X (constant for mature adults); 

A measure of devation from stable age distribu­
tion (D) may be defined as: 

D = l - S a x m a + £ Sx<l. sin. (12) 

This devation from Stable Age Distribution 
(D) depends on the number of age 0 (N 0) and 
the number of N x for x > a (i.e., Sx); and the 
number of N 0 per N x for x > a (i.e., mx). Age 
specific juvenile survival is not an issue. A n es­
timate of the variance of D may be calculated 
using Monte Carlo methods from the variance 
of $ calculated from the Chapman-Robson 
procedure, and the variance of m x (pooled age 
classes or age specific as required). 

The deviation from stable age distribution de­
fined by equation 11 examines the consistency 
of the standing age distribution with the 
known underlying life history. A deviation 
from stable age distribution may be interpreted 
by examining the fit of the Chapman-Robson 
* to the adult strata of the standing age distri­
bution (see Figures 1 and 2). If the residuals are 
symmetrical, the deviation is probably due to 
an incompatibilitiy between the recruitment 
schedule and the standing age distribution. 
Asymmetrical residuals indicate that survival ra­
tes may not be age constant, survival rates may l = S axm a + I Sax * " x m , (11) 

x = a 

Table 2. The life table for the Beverly caribou herd as developed by Thomas and Barry (1990a,b) 

Age Frequency Recruitment 
rate 

Standing age 
distribution 

Corrected 
(X= 1.007) 

Smoothed 

(x) (N x) K) (Sx) N X .X* N x Px S x »m x 

0 305 0 1.0 305 305 0.478 0 
1 146 0 0.478 146 145.9 0.929 0 
2 136 0.06 0.444 136 135.5 0.896 0.027 
3 120 0.3585 0.398 120 121.4 0.889 0.142 
4 109 0.4075 0.354 109 107.9 0.881 0.143 
5 83 0.4275 0.312 83 95.2 0.872 0.132 
6 101 0.4375 0.272 101 83.0 0.864 0.118 
7 70 0.4375 0.235 70 71.6 0.847 0.102 
8 59 0.4375 0.199 59 60.8 0.834 0.086 
9 52 0.4375 0.166 52 50.6 0.813 0.072 
10 45 0.4375 0.135 45 41.2 0.785 0.058 
11 21 0.4375 0.106 21 32.3 0.745 0.045 
12 31 0.4545 0.079 31 24.2 0.696 0.035 
13 12 0.4545 0.055 12 16.7 0.582 0.024 
14 9 0.4545 0.032 9 9.8 0.375 0.014 
15 2 0.4545 0.012 2 3.7 0.000 0.005 

X = 1.002 £ = l .o 
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Table 3 A life table for the George River caribou herd based on the same information as given in 
Messier et a /. (1988) but corrected for an assumed population growth rate of 1.00. 

Age Frequency Recruitment 
rate 

Standing age 
distribution 

Corrected 
(X= 1.001) 

Smoothed 

M (N x) ( m x ) (Sx) N x - X x N x Px S x .m x 

0 236.1 0 1.0 236.1 236.1 0.6567 0 
1 138 0 .585 138 155.0 0.8622 0 
2 156 0.06 .661 156 133.7 0.8584 1 0.0397 
3 113 0.35 .478 113 114.8 0.8536 0.1673 
4 94 0.40 .398 94 97.9 0.8474 0.1592 
5 83 0.40 .352 83 83.0 0.8397 0.1408 
6 65 0.40 .275 65 69.7 0.8298 0.1100 
7 63 0.40 .267 63 57.8 0.8168 0.1068 
8 57 0.40 .242 57 47.2 0.7995 0.0968 
9 40 0.40 .169 40 37.8 0.7757 0.0676 
10 24 0.40 .107 24 29.3 0.7406 0.0428 
11 18 0.40 .076 18 21.7 0.6868 0.0030 
12 12 0.40 .051 12 14.9 0.5914 0.0204 
13 7 0.40 .030 7 8.8 0.3807 0.0120 
14 1 0.40 .004 1 3.4 0.2310 0.0016 
15 4 0.40 .017 4 0.8 0.0 0.0680 

X = 1.001 £ = 1.0 

LINEAR FIT TO LN TRANSFORMED DATA LINEAR FIT TO LN TRANSFORMED DATA 

GEORGE RIVER CARIBOU HERD BEVERLY CARIBOU HERD 

5 5 [ 1 1 | | i 1 I 5.0 n 1 1 1 1 1— 

0.5 I J 1 1 1 1 1 1 — : 1 0.5 1 1 1 1 1 1 1 : 1 

0 2 4 6 8 10 12 14 16 4 6 8 10 12 14 16 

AGE CLASS AGE C L A S S 

Fig. 1. The standing age distribution of the Fig. 2. The standing age distribution of the Be¬
George River caribou herd (Messier et verly caribou herd (Thomas and Barry 
al. 1988) may be divided into «mature» 1990a) may be divided into «mature» 
(age 2-9) and senescent (age 10-15) age (age 2-10) and senescent (age 11-15) age 
strata that have age constant rates of strata that have age constant rates of 
decline (<t>). decline ($>). 
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have increased or decline, or population growth 
rate may have increased or declined. 

The devation from stable age distribution (D) 
calculated from the George River herd using 
mature (0.87) and senescent (0.64) values of 
<i> was -0.401 (SE = 0.100). The deviation 
from stable age distribution calculated for the 
Beverly herd using mature (0.86) and senescent 
(0.63) values of $ was 0.251 (SE = 0.074). 
These deviations suggest some caution in inter­
preting the age distributions of these herds as 
stable, but do not demonstrate that the age dis­
tributions are not stable. A «D» value that is 
significantly different from 0 signifies inconsis­
tent assumptions, but does not identify which 
assumptions are incorrect. As stated above, if 
the $ values are calculated as age specific, D 
wil l equal zero. Using flexible equations (such 
as the quadratic) to fit observed age distribu­
tions offers limited opportunity to examine the 
underlying assumptions involved in analysis of 
standing age distributions. 

A n inconsistency in the life table developed 
by Thomas and Barry (1990a) was noted. Barry 
and Thomas (1990a) give survival rate estimates 
based on the assumption that the population 
growth rate is 1.0 (i.e., no correction term). 
They suggest the mortality rate for age 0 is 
37% (Thomas and Barry 1990a, page 183), and 
the mortality rate of age class 1 is 10% (Tho­
mas and Barry 1990a, page 179). This gives a 
survival rate of 0.567 for age 0 to age 2, the 
first age class they feel is reliably represented. 
However, the fecundity data given in Thomas 
and Barry (1990b) indicates that N 0 = 305 and 
N 2 = 136. This indicates a survival rate of 
0.446 assuming the stable age X = 1.0. This dis­
crepancy is easily corrected by just accepting 
the age distribution estimate. A defensible argu­
ment for that approach would be that intra-ute¬
rine mortality was neglected in the lower calf 
mortality estimate. 

Conclusion 
Analysis of standing age distributions is an enig­
ma. I appears that unless there is considerable 
additional information about population 
growth rate and age specific rates of survival, 
analysis of standing age distributions only re­
turns the initial assumptions. Both Messier et 
al. (1988) and Thomas and Barry (1990a,b) were 
well aware of the assumptions they made in 
examining the George River and Beverly stan-

Table 4. A n example taken from Messier et al. 
(1988) to illustrate that the sum oi the 
standing age frequency (Sx) times the 
recruitment rate (mx) does not depend 
on the values of m x (i.e., it is always 
1.0). 

Age Frequency Recruitment Standing age 
rate distribution 

W (N x) K) (SJ S x .m s 

Any m x schedule -• stable age distribution £ = 1.0 

ding age distributions. It did not appear that 
the data were sufficient to resolve whether sur­
vival rates were age specific or age constant for 
either age distribution. The data were also in­
sufficient to determine whether the age distribu­
tions were unbiased or stable. Suspected chang­
es in the population dynamics of both herds 
were mentioned by Messier et al. (1988) and 
Thomas and Barry (1990a,b) which would have 
caused deviation from stable age configuration. 

The life tables developed for the George Ri­
ver and Beverly herd were consistent with the 
available data and the assumptions given. The 
recruitment rates given by Thomas and Barry 
(1990b) were measurements rather than inter­
pretations. However, the other life table para­
meters for both the George River and Beverly 
herds are most correctly understood as hypo­
theses which currently depend on un-testable 
assumptions. 

Life tables provide powerful tools for wildlife 
managers. However, it appears that the useful-

0 472.2 0 1.0 0 
1 138 0 0.292 0 
2 156 0.12 0.330 0.0397 
3 113 0.70 0.239 0.1673 
4 94 0.80 0.199 0.1592 
5 83 0.80 0.176 0.1408 
6 65 0.80 0.138 0.1100 
7 63 0.80 0.133 0.1068 
8 57 0.80 0.121 0.0968 
9 40 0.80 0.085 0.0676 
10 24 0.80 0.051 0.0428 
11 18 0.80 0.038 0.0030 
12 12 0.80 0.025 0.0204 
13 7 0.80 0.015 0.0120 
14 1 0.80 0.002 0.0016 
15 4 0.80 0.008 0.0680 
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Table 5. The Chapman-Robson (Chapman and 
Robson 1960) truncated values of 
<i> for «mature» (age 2-10 and 2-9) and 
«senescent» (age 11-15 and 10-15) age 
strata are given for the Beverly (Tho­
mas and Barry 1990a) and Georg Ri­
ver (Messier et al. 1988) caribou re­
spectively. 

Beverly herd 

Age Strata C-R P H I (*) SE of * 

Mature (age 2-10) 0.87 0.02 
Senescent (age 11-15) 0.64 0.06 

George River herd 

Aga Strata C-R PHI (#) SE of <ï> 

Mature (age 2-9) 0.86 0.02 
Senescent (age 10-15) 0.64 0.06 

ness of standing age distributions is limited un­
less there is precise and accurate population 
census data to accompany it. The ideal data set 
would include cohort estimates of age specific 
survival rates, age specific recruitment rates, and 
an independent census to confirm the popula­
tion dynamics suggested by the resulting life ta­
ble. Simulation studies might improve qualitati­
ve understanding of the value and dangers of 
simplifying assumptions to life table analysis of 
caribou. 
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