Nominalizing Evaluative Suffixes in Russian:
The Interaction of Declension Class, Gender, and Animacy*

Olga Steriopolo

This is a study of Russian nominalizing evaluative suffixes that form nouns of the -a-declension. Such suffixes are interesting because they can consistently change the animacy, declension class, and grammatical gender of the base to which they attach. However, the resulting nominalizations belong to different grammatical genders that seem to depend on the biological gender of a discourse referent.

This work investigates morphosyntactic properties of such evaluative suffixes and proposes an account for the differences in grammatical gender in the framework of Distributed Morphology (Halle and Marantz 1993, Halle 1997, Marantz 1997, among many others), which provides us with formal tools for handling syntactic processes that happen inside a word — in this case, inside evaluative nominalizations.

The study contributes to a number of much-debated questions in the current linguistic literature concerning the interaction between grammatical gender and declension class, mixed gender agreement, interpretability of gender features, and default gender.

1. Data and questions

The Russian nominalizing evaluative suffixes under investigation are listed in Table 1.

* Thank you very much to Paolo Acquaviva, Jonathan Bobaljik, Ruth Kramer, and Ivona Kučerová for personal discussions about the data and analysis. I would like to thank the two anonymous reviewers for their very useful comments and suggestions. This research was supported by a DFG research grant to Olga Steriopolo (4/2016–3/2019).

† The data, unless otherwise specified, are taken from Steriopolo (2008), where they are cited after Stankiewicz (1968).

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Evaluative suffixes

<table>
<thead>
<tr>
<th>Affectionate suffixes</th>
<th>-an', -aš, -on, -ul', -un', -ur, -us', -uş</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulgar suffixes</td>
<td>-ag, -ak, -al, -ar, -ax, -il, -in, -ob, -ot, -ox, -ug, -uk, -ux</td>
</tr>
</tbody>
</table>

Table 1: Russian evaluative suffixes (from Steriopolo 2008, 62)

They have the following common properties. First, they all have evaluative meaning expressing the speaker’s attitude (affectionate or vulgar) and are used productively in colloquial Russian, as shown in (1) and (2).

(1) a. pap-a
dad-NOM.SG (MASC; CLASS II)
’dad’
\[\text{dad} \text{-EVAL-NOM.SG (MASC; CLASS II)} \]

b. pap-ul-ja
’dad (affect)’

(2) a. vor
thief-NOM.SG (MASC; CLASS I)
‘thief’
\[\text{thief} \text{-EVAL-NOM.SG (MASC/FEM; CLASS II)} \]

b. vor-jug-a
‘thief (vulg)’

Second, they can attach to different syntactic categories and always form nouns, as in (3) and (4).

(3) ADJECTIVE ⇒ NOUN
a. grjaz-n-yj
dirty-ADJ-MASC.NOM.SG
‘dirty’
\[\text{dirty-ADJ-EVAL-NOM.SG (MASC/FEM; CLASS II)} \]

b. grjaz-n-ux-a
‘dirty person (vulg)’

(4) VERB ⇒ NOUN
a. ras-ter-ja-t’
VERB.PREF-lose-TH-INF
‘to lose’
\[\text{VERB.PREF-LOSE-EVAL-NOM.SG (MASC/FEM; CLASS II)} \]

b. ras-ter-jaš-a
‘person who loses things (affect)’

Third, they always form nouns of the –a-declension (henceforth class II), as in (5) and (6).

(5) CLASS I ⇒ CLASS II
a. syn
son-NOM.SG (MASC; CLASS I)
‘son’
\[\text{son-EVAL-NOM.SG (MASC; CLASS II)} \]

b. syn-ul-ja
‘son (affect)’

(6) CLASS II = CLASS II
a. mam-a
mother-NOM.SG (FEM; CLASS II)
‘mother’
\[\text{mother-EVAL-NOM.SG (FEM; CLASS II)} \]

b. mam-ul-ja
‘mother (affect)’

1.1 Animacy
The majority of these suffixes consistently form animate nouns, mostly referring to humans, as in (7), (8) (but they can also refer to anthropomorphic animals, such as pets). However, two
vulgar suffixes (–ob, –ot) can only attach to inanimate bases and form inanimate nouns, as in (9), (10). This is summarized in Table 2.

(7) INANIM ⇒ ANIM
 a. slast
 sweet.NOM.SG (FEM; CLASS III) sweet-EVAL-NOM.SG (MASC/FEM; CLASS II)
 ‘sweet’ ‘person with sweet tooth (affect)’
 b. slast-en-a

(8) a. kras-ot-a
 pretty-NOM-NOM.SG (FEM; CL II) pretty/red-NOM-EVAL-NOM.SG (MASC/FEM; CLASS II)
 ‘beauty’ ‘pretty person (affect)’

(9) INANIM = INANIM
 a. styd
 shame.NOM.SG (MASC; CLASS I) shame-EVAL-NOM.SG (FEM; CLASS II)
 ‘shame’ ‘shame (vulg)’
 b. styd-ob-a

(10) a. sram
 shame.NOM.SG (MASC; CLASS I) shame-EVAL-NOM.SG (FEM; CLASS II)
 ‘shame’ ‘shame (vulg)’

 Evaluative suffixes
 Vulgar suffixes:
 ii. Inanimate -ob’, -ot

Table 2: Russian evaluative suffixes and animacy

1.2 Grammatical gender

1.2.1 Animate suffixes

The same suffix can form nouns of different grammatical genders: masculine, as in (11); feminine, as in (12); and common gender (MASC or FEM), as in (13) and (14). It is important to note that when animate suffixes attach to kinship terms, the gender of the base is always preserved, as in (11), (12).

(11) MASC = MASC
 a. ded
 grandfather.NOM.SG (MASC; CL I) grandfather-EVAL-NOM.SG (MASC; CLASS II)
 ‘grandfather’ ‘grandfather (affect)’
 b. ded-ul-ja

(12) FEM = FEM
 a. bab-a
 grandmother-NOM.SG (FEM; CL II) grandmother-EVAL-NOM.SG (FEM; CLASS II)
 ‘grandmother’ ‘grandmother (affect)’
 b. bab-ul-ja
(13) **MASC ⇒ COMMON GENDER (MASC OR FEM)**

a. čert
 devil.NOM.SG (MASC; CLASS I)
 ‘devil’

b. čert-jak-a
 devil-EVAL-NOM.SG (MASC/FEM; CLASS II)
 ‘devious person (vulg)’

(14) **FEM ⇒ COMMON GENDER (MASC OR FEM)**

a. pravd-a
 truth-NOM.SG (FEM; CLASS II)
 ‘truth’

b. pravd-ox-a
 truth-EVAL-NOM.SG (MASC/FEM; CLASS II)
 ‘truth telling person (vulg)’

Nouns of so-called common gender can trigger either masculine or feminine gender agreement depending on the biological gender of the referent. Such nouns are not uncommon across languages, e.g., Spanish el/la estudiante ‘the (masc/fem) student’; Garifuna mútu lé/tó ‘this (masc/fem) person (=man/woman)’ (Munro 2015, 7); Halkomelem t’o/a/θә álex ‘the (unmarked/fem) sibling (=brother/sister)’ (Steriopolo and Wiltschko 2010, 163).

Common gender nouns (MASC OR FEM) formed from animate evaluative suffixes can trigger feminine (15a), masculine (15b), or mixed (feminine and masculine; 15c) gender agreements.

 PREF-hide-PAST-FEM
 ‘This (FEM) nasty (FEM) greedy person has hidden (FEM) all the sweets again.’

b. Èt-ot vred-n-yj žad-in-a opjat’ vse konfet-y this-MASC nasty-ADJ-MASC.NOM.SG greedy-EVAL-NOM.SG again all sweet-PL s-prjat-al.
 PREF-hide-PAST-MASC
 ‘This (MASC) nasty (MASC) greedy person has hidden (MASC) all the sweets again.’

c. Èt-a vred-n-aja žad-in-a opjat’ vse konfet-y this-FEM nasty-ADJ-FEM.NOM.SG greedy.person-EVAL-NOM.SG again all sweet-PL s-prjat-al.
 PREF-hide-PAST-MASC
 ‘This (FEM) nasty (FEM) greedy person has hidden (MASC) all the sweets again.’

2 Mixed gender agreement is subject to speakers’ variation and is unaccepted by some native speakers. Examples of mixed gender agreement in Russian can be found in the Russian National Corpus, available at http://ruscorpora.ru/. The data in (15) are from interviews with four native speakers of Russian (three females, one male; aged 38–73). While a more extensive survey is needed, these initial findings are noteworthy, as they show variation among speakers.

3 The fourth logical variant, *Èt-ot vred-n-yj žad’in-a opjat’ vse konfet-y s-prjat-al-a, is ungrammatical in Russian, confirming to the Agreement Hierarchy (Corbett 1991).
1.2.2 Inanimate suffixes

Inanimate suffixes only form nouns of feminine gender, as in (16); see also (9), (10) above.

(16) \[\text{MASC} \Rightarrow \text{FEM} \]
\begin{align*}
a. & \quad \text{smex} \quad \text{laughter} \quad \text{NOM} \quad \text{SG} \\
& \quad \text{smex-ot-a} \\
& \quad \text{laughter} \quad \text{VAL} \quad \text{NOM} \quad \text{SG} \\
& \quad \text{laughter} \quad \text{NOM} \quad \text{SG} \\
& \quad \text{laughter} \quad \text{Vulg}\end{align*}

1.3 Summary

The properties of the nominalizing evaluative suffixes under investigation are summarized in Table 3. They all form nouns of the –a-declension (CLASS II). The majority of the suffixes (excluding -ob, -ot) form animate nouns that belong to different grammatical genders (MASC, FEM, or COMMON). Two vulgar suffixes (-ob, -ot) do not seem to affect animacy (they only attach to inanimate bases and form inanimate nouns) and consistently form nouns of feminine gender.

| Evaluative suffixes | Affectionate suffixes: Animate (fem/masc/common) | Vulgar suffixes: \\
i. Animate (fem/masc/common) | -an', -aš, -on, -ul', -un', -ur, -us', -uš \\
ii. Inanimate (fem) | -ag, -ak, -al, -ar, -ax, -il, -in, -ox, -ug, -uk, -ux | -ob, -ot |

Table 3: Russian evaluative suffixes, animacy, and gender

2. Analysis

The goals of this research are as follows: first, to investigate the morphosyntactic properties of the nominalizing evaluative suffixes; second, to propose an account for the different grammatical genders of the resulting nominalizations; and third, to account for mixed gender agreement. In §2.1., I analyze the manner of syntactic attachment of the evaluative suffixes (how do they attach, as a syntactic head or syntactic modifier?). In §2.2., I analyze their place of syntactic attachment (where do they attach in the syntactic tree?).

The research is done in the framework of Distributed Morphology (DM) (Halle and Marantz 1993, Halle 1997, Marantz 1997, among many others) which distinguishes between word formation from roots and from syntactic categories. The central claim of DM is that there is no division between syntax and morphology. The relationships between morphemes are structurally identical to relationships between words. DM contrasts with descriptivist frameworks which view categorization in terms of inflection vs. derivation, but this has been proven problematic with respect to the behaviour of evaluative derivations (Brown and Hippisley 2012, Dressler and Barbaresi 1994, Manova 2004, Scalise 1984, 1988, Stump 1991, 2001, Vinogradov 1972, among others). It has been shown in the literature that the behaviour of evaluative derivations is not wholly inflectional or derivational. In contrast, DM regards inflection and derivation not as primitives, but as derived notions, and thus, this framework can better account for the behaviour of nominalizing evaluative suffixes in Russian.

2.1 The manner of syntactic attachment

I propose that the evaluative suffixes under investigation are nominalizing heads, as in (17).
The evidence comes from the fact that they can attach to various syntactic categories (adjectives, verbs, nouns) and always form nouns, as shown in (18)–(20).

(18) **ADJECTIVE ⇒ NOUN**
 a. grjaz-n-yj
 b. grjaz-n-ux-a
 \[\text{dirty-adj-masc.nom.sg}\] \[\text{dirty-adj-eval-nom.sg (masc/fem; class II)}\]
 ‘dirty’
 ‘dirty person (vulg)’

(19) **VERB ⇒ NOUN**
 a. vy-piv-a-t’
 b. vy-piv-ox-a
 \[\text{verb.prel-drink-th-inf}\] \[\text{verb.prel-drink-eval-nom.sg (masc/fem; class II)}\]
 ‘to drink up’
 ‘boozer (vulg)’

(20) **NOUN = NOUN**
 a. kot
 b. kot-jar-a
 \[\text{cat.nom.sg (masc; class I)}\] \[\text{cat-expr-nom.sg (masc; class II)}\]
 ‘cat’
 ‘cat (vulg)’

2.2 The place of syntactic attachment

The data in (20) above raise the following question: Where in the syntactic tree do the evaluative suffixes attach? Do they attach to roots, as in (21a), or to syntactic categories, as in (21b)?

(21) a. \[\text{n}\] \[\text{√root}\] \[\text{[eval]}\]
 b. \[\text{n}\] \[\text{v/a/n}\] \[\text{[eval]}\] \[\text{v/a/n}\] \[\text{√root}\]

I show that there is good evidence to suggest they attach above syntactic categories, as in the structure (21b). One piece of evidence stems from the fact that category-forming morphology is inside the evaluative suffix, as shown in (22)–(24).

(22) **ADJECTIVAL SUFFIX**
 a. žad-n-yj
 b. žad-n-jug-a
 \[\text{stingy-adj-masc.sg}\] \[\text{stingy-adj-eval-nom.sg (masc/fem; class II)}\]
 ‘stingy’
 ‘stingy person (vulg)’
Another piece of evidence is that an evaluative suffix can attach to compounds, as in (25).

(25) a. kos-o-lap-yj
 crook-TH-paw-MASC.NOM.SG
 ‘awkward’

b. kos-o-lap-in-a
 crook-TH-paw-EVAL-NOM.SG (MASC/FEM; CLASS II)
 ‘awkward person (vulg)’

2.3 Morphosyntactic features

2.3.1 Proposal 1: The feature [ANIMATE]

I propose that the majority of suffixes (except –ob, –ot) are specified for the feature [ANIMATE], as in (26), while the suffixes –ob, –ot do not have this feature.

(26)
[ANIMATE]

The evidence comes from the fact that they consistently form animate nouns from inanimate bases, as in (27) and (28).

(27) a. slast’
 sweet.NOM.SG (FEM; CLASS III)
 ‘sweet’

b. slast-ën-a
 sweet-EVAL-NOM.SG (MASC/FEM; CLASS II)
 ‘person with sweet tooth (affect)’
It is interesting to note that the structure proposed in (26) above is similar to the proposals in Panagiotidis (forthcoming, 9) and Wiltschko (2012), as in (29a) and (29b), respectively, in which animacy is located immediately above \(np \). In (29a), a structure for animacy projection is proposed. In (29b), \([\text{animate}]\) is an aspectual feature, associated with the category I(nner)Aspect.

2.3.2 Proposal 2: The feature \([\text{CLASS}]\)

I propose that the evaluative suffixes are specified for the feature declension \([\text{CLASS II}]\), but they have no gender feature, as shown in (30).\(^4\)

The reason for this proposal is that the evaluative suffixes consistently form nouns of the \(-a\)-declension (or \([\text{CLASS II}])\), as in (31)–(33).

\(^4\) This is contrary to Embick (2010), Alexiadou and Müller (2008), and Kramer (2015), among others, who consider \([\text{CLASS}]\) a post-syntactic phenomenon. I discuss advantages of my proposal below (§2.3.3).
The evaluative suffixes are not specified for [GENDER] because they form nouns of different genders, as in (34b)–(36b). It is important to note that they can nevertheless change the gender of the base to which they attach. In (34), a masculine noun becomes a common gender noun when the evaluative suffix -in is attached. In (35), a masculine noun becomes feminine when the evaluative suffix -ob is attached.

(34) MASC ⇒ COMMON GENDER (MASC or FEM)
 a. durak
 b. durač-in-a
 fool.NOM.SG (MASC; CLASS I) fool-EVAL-NOM.SG (MASC/FEM; CLASS II)
 ‘fool’ ‘fool (vulg)’

(35) MASC ⇒ FEM
 a. styd
 b. styd-ob-a
 shame.NOM.SG (MASC; CLASS I) shame-EVAL-NOM.SG (FEM; CLASS II)
 ‘shame’ ‘shame (vulg)’

(36) MASC = MASC
 a. brat
 b. brat-ux-a
 brother.NOM.SG (MASC; CLASS I) brother-EVAL-NOM.SG (MASC; CLASS II)
 ‘brother’ ‘brother (eval)’

It has been proposed before (Arsenijevich 2016, Matushansky 2013) that common gender nouns in Russian are unmarked for gender features. The following question arises: How can we account for a change in the gender of the base, as in (34), (35) above? Below I argue that the evaluative suffixes under investigation change the declension class of the base and grammatical gender is determined from that declension class in Russian.

2.3.3 Proposal 3: Grammatical gender is determined from declension class in Russian

The gender of the head noun determines agreement patterns, while declension is not relevant for the purpose of agreement. The definitions of declension and gender are given in (37).

(37) DEFINITIONS OF DECLENSION AND GENDER (from Aronoff 1994)
 a. Declension is a set of lexemes whose members each select the same set of inflectional morphemes.
 b. Gender is a nominal agreement class.

It has been proposed that while gender features are syntactic, declension is a post-syntactic phenomenon (Alexiadou and Müller 2008, Kramer 2015, among others). A declension class node is inserted post-syntactically at/near n (Oltra-Massuet 1999, Embick and Halle 2005,
Embick and Noyer 2007; Embick 2010), as in (38). A Th node acquires a declension class feature in the context of a root (Kramer 2015, 238–39).

\[(38)\]

\[\textbf{a. Syntax} \quad \text{nP} \quad \text{n} \quad [+\text{FEM}] \quad \sqrt{p} \quad \text{Th} \quad \sqrt{v} \quad [\text{CLASS}] \quad (\text{from Kramer 2015, 237})\]

If this proposal is correct, we predict that gender features can (but must not) affect declension (Kramer 2015, 233, 237). However, a problem arises, because in Russian, the opposite seems to be true—declension affects gender, but not the reverse (see Aronoff 1994, Corbett 1982, 1991, Fraser and Corbett 1995). This is also supported by the experimental studies of the acquisition of gender in Russian by Tarasenkova (2010).

In Table 4, I list examples of four declension classes in Russian (slightly modified from Corbett 1982).

<table>
<thead>
<tr>
<th>Gender</th>
<th>Class I</th>
<th>Class II</th>
<th>Class III</th>
<th>Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>fem (professions)</td>
<td>fem</td>
<td>masc</td>
<td>fem</td>
<td>neut</td>
</tr>
<tr>
<td></td>
<td>(10 nouns ending in -mja)</td>
<td></td>
<td>(1 noun put’ ‘way)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singular</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominative</td>
<td>zakon ‘law’</td>
<td>škol-a ‘school’</td>
<td>kost ‘bone’</td>
<td>vin-o ‘wine’</td>
</tr>
<tr>
<td>Accusative</td>
<td>zakon</td>
<td>škol-u</td>
<td>kost</td>
<td>vin-o</td>
</tr>
<tr>
<td>Genitive</td>
<td>zakon-a</td>
<td>škol-y</td>
<td>kost-i</td>
<td>vin-a</td>
</tr>
<tr>
<td>Dative</td>
<td>zakon-u</td>
<td>škol-e</td>
<td>kost-i</td>
<td>vin-u</td>
</tr>
<tr>
<td>Instrumental</td>
<td>zakon-am</td>
<td>škol-om</td>
<td>kost-i</td>
<td>vin-am</td>
</tr>
<tr>
<td>Locative</td>
<td>zakon-e</td>
<td>škol-e</td>
<td>kost</td>
<td>vin-e</td>
</tr>
<tr>
<td>Plural</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominative</td>
<td>zakon-y ‘laws’</td>
<td>škol-y ‘schools’</td>
<td>kost-i ‘bones’</td>
<td>vin-a ‘wines’</td>
</tr>
<tr>
<td>Accusative</td>
<td>zakon-y</td>
<td>škol-y</td>
<td>kost-i</td>
<td>vin-a</td>
</tr>
<tr>
<td>Genitive</td>
<td>zakon-ov</td>
<td>škol</td>
<td>kost-ej</td>
<td>vin</td>
</tr>
<tr>
<td>Dative</td>
<td>zakon-am</td>
<td>škol-am</td>
<td>kost-jam</td>
<td>vin-am</td>
</tr>
<tr>
<td>Instrumental</td>
<td>zakon-am</td>
<td>škol-am</td>
<td>kost-jami</td>
<td>vin-am</td>
</tr>
<tr>
<td>Locative</td>
<td>zakon-ax</td>
<td>škol-ax</td>
<td>kost-jax</td>
<td>vin-ax</td>
</tr>
</tbody>
</table>

Table 4: Declension classes in Russian (modified from Corbett 1982)

If only the gender (not the declension class) of a noun is known, it is impossible to determine its declension class. For example, a feminine noun can belong to Class I, Class II, or Class III; a masculine noun can belong to Class I, Class II, or Class IV (with just one noun, put’ ‘way,’ in Class III); a neuter noun can belong to Class IV (with ten neuter nouns in Class III). In contrast, grammatical gender can be determined from a combination of declension class and biological gender (see Steriopolo, forthcoming), as in (39).
If gender is a syntactic feature and declension class is post-syntactic, we cannot account for the fact that gender can be determined from declension class and not the reverse. Following Kučerová (forthcoming, for Italian) I propose that declension class features and gender features are both present in the syntax, which allows for their interaction. If this is on the right track, we predict the following three combinations in Russian, (40).

(40) a. n
 n X
 [GENDER][CLASS]
 the majority of nouns
 indeclinable nouns
 common gender nouns

For example, a neuter noun of CLASS III like vremya ‘time’ must be specified for the both features [NEUTER] and [CLASS III], as in the structure (40a) above. If only the gender feature [NEUTER] were specified, the declension class would remain unclear (it could be CLASS III or CLASS IV). If only the feature [CLASS III] were specified, grammatical gender would be unclear (it could be feminine or neuter).

Russian has a large group of indeclinable nouns, such as pal’to ‘coat.neut,’ kenguru ‘kangaroo.masc,’ attashe ‘attaché.masc,’ and ledi ‘lady.fem.’ Such nouns can take different gender agreements, but they do not decline (see Corbett 1991, 40). I propose that such nouns are only specified for the feature [GENDER] and not for class, as in (40b) above.

The current proposal is that the evaluative suffixes under investigation are specified only for the feature [CLASS] but they have no gender feature, as in the structure (40c) above. The following question arises: Where does the grammatical gender of evaluative derivations come from? I propose that there are two sources for grammatical gender: (i) gender as a default (determined from [CLASS]), and (ii) gender determined from biological gender (sex) of the referent. I will return to this question later (see §2.6).

2.4 Syntactic approaches to account for evaluative derivations

Here I discuss which syntactic approach best accounts for evaluative derivations in Russian: a hierarchical structure approach (Chomsky 2000, 2001) or a cyclicity approach (Marantz 2001, Embick 2010, Marvin 2013). To answer this question, I investigate Russian data where an evaluative suffix attaches to a gendered nominal, as in (41).
The two approaches make completely different predictions. Consider first the hierarchical structure approach. The probe searches downward into its c-command domain for a goal and enters into an Agree relation with the first goal it encounters. In the structure (41) above, $D_{[\text{GEN}__] }$ would agree in gender with the lower $n_{[\text{GENDER}]}$ because the higher $n_{[\text{CLASS II}[\text{EVAL}]]}$ has no gender feature, hence it is not a suitable goal.

Consider now the cyclicity approach. n is a phase head that triggers spell-out of its complement. The spelled-out material is not accessible to later operations (Phase Impenetrability Condition, as in Chomsky 1999, 2000). Thus, in the structure (41) above, the higher $n_{[\text{EVAL}]}$ triggers spell-out of the lower $n_{[\text{GENDER}]}$, which means that $D_{[\text{GEN}__]}$ will have no access to the lower $n_{[\text{GENDER}]}$. The Russian data in (42) and (43) show that the cyclicity approach can best account for the data.

In (42c), the hierarchical structure approach predicts that $D_{[\text{GEN}__]}$ would agree with the lower $n_{[\text{FEM}]}$ because the higher $n_{[\text{EVAL}]}$ is not a suitable goal (it has no gender feature). Thus, the resulting evaluative derivation should be feminine. The cyclicity approach makes a different prediction: gender of $D_{[\text{GEN}__]}$ has no access to the lower $n_{[\text{FEM}]}$. Thus, the gender of the resulting evaluative derivation should be unknown (it could be masculine or feminine, since it denotes a human). The data in (42b) show that this is exactly what we find.

In (43c), the hierarchical structure approach predicts that the evaluative derivation should be masculine, while the cyclicity approach again predicts unknown gender, as in (43b).
Based on this evidence, I conclude that the Russian data support the cyclic approach; thus, I will assume this approach in this work (see Kramer 2014, 222–25, who reaches the same conclusions for Amharic and Somali).

It was noted above (§1.2.1) that kinship nouns behave differently — they do not change the gender of the base when an evaluative suffix attaches to them, as in (44), (45). The question arises: What accounts for the differences between kinship and non-kinship nouns?

(44) \(\text{MASC} = \text{MASC} \)

a. brat

\(\text{brother.NOM.SG (MASC; CLASS I)} \)

‘brother’

c. D

D

\[\text{[GEN]} \]

n n

\[\text{[EVAL]} \]

\[\text{vbrat} \]

(45) \(\text{FEM} = \text{FEM} \)

a. sestra

\(\text{sister-NOM.SG (FEM; CLASS II)} \)

‘sister’

c. D

D

\[\text{[GEN]} \]

n n

\[\text{[EVAL]} \]

\[\text{vsestr} \]
Bobaljik and Zocca (2011) investigate the behaviour of nominal predicates under ellipsis and show that there are semantic classes of nominals that differ with respect to whether or not the underived masculine forms carry a presupposition of maleness. The data in (46i) show that Russian kinship terms like brat 'brother' carry a presupposition of maleness, while the non-kinship terms like vor 'thief' do not. The data in (46ii) show that when an evaluative suffix is attached, it produces no change in the presupposition of maleness. The question arises as to whether kinship nouns may have a special syntactic feature compared to non-kinship nouns. This question is discussed in the following section.

(46) APPLYING BOBALJIK AND ZOCCA (2011) TO RUSSIAN: KINSHIP NOMINALS

(i) DERIVED FORMS WITH EVALUATIVE SUFFIX
 Peter brother-EVAL and Maria also
 ‘Peter is a brother (eval) and Maria, too.’

b. Petja – vor-jug-a i Marija toče.
 Peter thief-EVAL and Maria also
 ‘Peter is a thief (eval) and Maria, too.’

2.5 An interpretable gender features approach

In the Distributed Morphology framework, roots are deprived of any features, including gender (Borer 2005, Acquaviva 2009, Embick and Noyer 2007, Embick 2012, Kramer 2015). Kramer (2015) proposes that gender features are located on n and come in two different types: interpretable, for natural gender, and uninterpretable, for arbitrary gender, as in (47). The “plain” n has no gender feature and the result is gender by morphological default.
According to Kramer (2015), interpretable features are legible at LF and can change the interpretation of a linguistic structure (e.g., they can insert a denotation, see Zamparelli 2008, 170). Uninterpretable features are illegible at LF; they do not affect interpretation. Thus, there are no inherent male/female meanings on roots like √mother, √father. Licensing a root in a particular nominal context is what makes it interpreted as male or female (Kramer 2015, 52). For example, in (48), the feature i [+FEM] triggers female interpretation and not the meaning of the root.

A problem might arise in this approach which concerns non-nominal derivations with a kinship meaning. An analysis in (48) predicts that such derivations (i) either cannot have a male/female interpretation at all (Russian data in (49) contradict this), or (ii) they must be cross-linguistically derived from a nominal that has an interpretable gender feature, as shown in (49d). Further research can show whether (ii) is indeed the case.

Also, if Kramer’s (2015) approach is correct, we expect that in languages with no grammatical gender, (i) either there is no male/female interpretation at all, or (ii) if there is such an interpretation, the interpretable gender features must be present in the syntax. A question arises: What need is there to assume syntactic gender features in languages with no syntactic gender agreement?
If we applied Kramer (2015) to the Russian data in question, the kinship noun brat ‘brother’ would have the interpretable gender feature \(i[-fem] \) (50a), while vor ‘thief’ would not have this feature (50b), hence these nouns would differ in the syntactic feature [\(\text{GENDER} \)].

(50)
a. \(n \quad \sqrt{\text{brat}} \quad i[-fem] \) ‘brother’
b. \(n \quad \sqrt{\text{vor}} \) ‘thief’

In this case, \(\text{eval} \) suffixes would be the realizations of different syntactic feature bundles (51).

(51)
a. \(n, \text{[eval]}, i[+fem] \) Female natural gender
b. \(n, \text{[eval]}, i[-fem] \) Male natural gender
c. \(n, \text{[eval]} \) No natural gender (or it is irrelevant/unknown)

All feature bundles in (51) contain the category feature \(n \) and the semantic feature \(\text{[eval]} \). However, they are different in terms of gender features: (51a) has \(i[+fem] \); (51b) has \(i[-fem] \), and (51c) has no gender feature (morphological default).\(^5\) However, the following three problems might arise with the approach in (51).

First is a problem of potential overgeneration. Every \(\text{eval} \) suffix, as in (52b), would have three homophonous counterparts \(n \text{[+fem]}, n \text{[-fem]}, \) and “plain” \(n \), as in (53).

(52)
a. grjaz-n-yj
\[\text{dirty-adj-masc.nom.sg} \]
b. grjaz-n-ul-ja
\[\text{dirty-adj-eval-nom.sg (masc/fem; class II)} \]
‘dirty’
‘dirty person (affect)’

(53)
a. \(n \quad a \quad n \quad a \quad n \quad a \quad -ul’ \)
b. \(n \quad a \quad n \quad a \quad n \quad a \quad -ul’ \)
c. \(n \quad a \quad n \quad a \quad n \quad a \quad -ul’ \)
\(\text{[eval]} \quad a \quad \sqrt{\text{grjaz-}} \quad \text{[eval]} \quad a \quad \sqrt{\text{grjaz-}} \quad \text{[eval]} \quad a \quad \sqrt{\text{grjaz-}} \)
\(i[+fem] \quad -n- \quad i[-fem] \quad -n- \quad -n- \)

Second, the feature \([\text{class}] \) is not in Kramer’s system. Thus, gender as a default, as in (53c), would be unclear in Russian, as default gender can be feminine (\(\text{class II} \) nouns) or masculine (\(\text{class I} \) nouns). For example, in Russian \(\text{class II} \) nouns, when the gender of the referent is unknown (or unimportant), feminine gender agreement is most likely to be used, as in (54). This presents an additional piece of evidence for the dependency of Russian grammatical gender on declension class (as discussed in §2.3.2).

(54) \(n, [\text{class II}] \Rightarrow [\text{fem}] \)

- Tam grjaz-n-ul-ja sid-it.
there \[\text{dirty-adj-eval-nom.sg (class II)} \] sit-pres

\(^5\) Thank you very much to Ruth Kramer for a personal discussion of this phenomenon in Russian.
'A dirty person (AFFECT) is sitting there.'

– Kak-aja grjaz-n-ul-ja?
what-FEM dirty-ADJ-EVAL-NOM.SG
‘What (FEM) dirty person (AFFECT)?’

In Russian CLASS I nouns, when the gender of the referent is unknown (or unimportant), masculine gender agreement is most likely to be used, as in (55).

(55) n, [CLASS I] ⇒ [MASC]
– Tam vrač sid-it.
there doctor.NOM.SG (CLASS I) sit-PRES
‘A doctor is sitting there.’
– Kak-oj vrač?
what-MASC doctor.NOM.SG
‘What (MASC) doctor?’

The third potential problem with this approach is undergeneration. Although Kramer’s (2015) system accounts for feminine (56a) and masculine (56b) gender agreements with no problem, it cannot account for mixed gender agreement, as in (56c).

(56) a. Èt-a grjaz-n-ul-ja vsë tut
this-FEM dirty.person-ADJ-EVAL-NOM.SG everything here
za-pač-kal-a.
PREF-make.dirty-PAST-FEM
‘This (FEM) dirty person (AFFECT) has made (FEM) everything dirty.’

b. Èt-ot grjaz-n-ul-ja vsë tut
this-MASC dirty.person-ADJ-EVAL-NOM.SG everything here
za-pač-kal.
PREF-make.dirty-PAST-MASC
‘This (MASC) dirty person (EVAL) has made (MASC) everything dirty.’

c. Èt-a grjaz-n-ul-ja vsë tut
this-FEM dirty.person-ADJ-EVAL-NOM.SG everything here
za-pač-kal.
PREF-make.dirty-PAST-MASC
‘This (FEM) dirty person (AFFECT) has made (MASC) everything dirty.’

To summarize, if we apply Kramer’s (2015) system to Russian evaluative derivations, the system seems to either overgenerate, as in (53), with three homophonous suffixes, or undergenerate, as in (56c), with mixed gender agreement. Therefore, here I do not assume this system; instead, I assume that ‘male’/’female’ is not a syntactic feature, but a part of the root meaning (Steriopolo and Wiltschko 2010, Kučerová, forthcoming). In other words, I assume no syntactic differences between the nouns ‘brother’ and ‘thief,’ as diagramed in (57). The difference between (57a) and (57b) is in the meanings of the roots—the root √brat
‘brother’ has ‘male’ as part of its meaning, while the root √vor ‘thief’ does not (see discussion in §2.4 above).

(57) a. \[\text{n} \quad \text{brat} \quad \text{[MASC]} \quad \text{‘brother’} \]
 b. \[\text{n} \quad \text{vor} \quad \text{[MASC]} \quad \text{‘thief’} \]

In the cyclicity approach assumed here, when an eval nominal head attaches to a kinship nominal like ‘brother’ in (58c), it triggers spell-out of its complement (the lower n), and in either approach (Kramer’s or the current approach), the meaning ‘male’ is already accessible at this point.

(58) a. brat
 b. brat-ux-a
 brother_NOM_SG (MASC; CLASS I) brother_EVAL_NOM_SG (MASC; CLASS II)
 ‘brother’ ‘brother (eval)’
 c. n
 brat-ux-a ‘brother (male) (eval)’
 n
 brat ‘brother (male)’
 \[\text{[EVAL]} \quad \text{n} \quad \text{\sqrt{brat}} \quad \text{‘brother’}\]

However, the question arises: What about non-kinship derivations, as in (59)? They do not have ‘male’/‘female’ as part of their root meanings. Where does their gender come from?

(59) a. vor
 b. vor-jug-a
 thief_NOM_SG (MASC; CLASS I) thief_EVAL_NOM_SG (MASC/FEM; CLASS II)
 ‘thief’ ‘thief (vulg)’

A possible answer is from the biological gender of the referent (or “referential” gender), as shown in (60). I now turn to a discussion of this possibility.

(60) a. FEMALE REFERENT
 Ėt-a vor-jug-a vsē tut u-kr-al-a.
 this-FEM thief_EVAL_NOM_SG everything here PREF-steal-PAST-FEM
 ‘This (FEM) thief (VULG) has stolen (FEM) everything here.’

 b. MALE REFERENT
 Ėt-ot vor-jug-a vsē tut u-kr-al.
 this-MASC thief_EVAL_NOM_SG everything here PREF-steal-PAST-MASC
 ‘This (MASC) thief (VULG) has stolen (MASC) everything here.’
2.6 Where does referential gender come from?

Kučerová (forthcoming) proposes that the φ-feature valuation can be determined from the context and that contextually determined gender (at least in Italian) is assigned on D, as in (61).6

(61) a. Matching of unvalued gender features

```
DP
  D  nP
    [GEN_]

[GEN_]
```

b. D cannot get valued, it is valued from the context

```
DP
  D  nP
    [GEN:FEM]

[GEN_]
```

c. The gender feature on n gets valued via the matching link with D

```
DP
  D  nP
    [GEN:FEM]

[GEN:FEM]
```

According to Kučerová (forthcoming), contextual gender valuation is dependent on the feature $[\text{PERSON}]^7$ (or $[\pm \text{-PARTICIPANT}]$ in Nevins’ 2007 terms), which is licensed by the syntax-semantics interface and is associated with an index as part of labelling of the DP.

Sauerland (2004) and Matushansky (2013) propose that valuation of context-dependent gender features is driven by the semantic component as presupposition associated with an assignment index (like a pointer to the actual referent). A semantic denotation of masculine/feminine genders is given in (62). A feminine feature associated with the index i will denote a female if the referent is female, as in (62a). A masculine feature with the index i will denote a person if the referent is a person, as in (62b). Thus, masculine gender is compatible with both natural genders.

6 See also Steriopolo (2017) for a similar approach across languages.

7 It has been repeatedly argued in the literature that the feature $[\text{PERSON}]$ is located on the category D (the category of personal pronouns) (see Ritter 1995; Carstens 2000; Baker 2008; Danon 2011; Landau 2016).
(62) SEMANTIC DENOTATION OF MASC/FEM (from Kučerová 2017, 27, modelled after Heim 2008)

a. [[GEN:f]]^{w,g} = \lambda x. \text{a \textit{female} in } w: x
b. [[GEN:m]]^{w,g} = \lambda x. \text{a \textit{person} in } w: x

Although (62) accounts for the Italian data (Kučerová, forthcoming), it does not seem to account for the Russian data, because in the Russian EVAL derivations, feminine gender is compatible with both natural genders, as shown in (63), but masculine gender is not, as shown in (64).

(63) MALE OR FEMALE REFERENTS ⇒ [FEM]

 he such-FEM.NOM.SG dirty-ADJ-EVAL-NOM.SG (CLASS II)
 ‘He is such (FEM) a dirty person (AFFECT).’
 she such-FEM.NOM.SG dirty-ADJ-EVAL-NOM.SG (CLASS II)
 ‘She is such (FEM) a dirty person (AFFECT).’

(64) MALE REFERENTS ⇒ [MASC]

 he such-MASC.NOM.SG dirty-ADJ-EVAL-NOM.SG (CLASS II)
 ‘He is such (MASC) a dirty person (AFFECT).’
 she such-MASC.NOM.SG dirty-ADJ-EVAL-NOM.SG (CLASS II)
 ‘She is such (MASC) a dirty person (AFFECT).’

I propose to modify the semantic denotations in (62) to account for Russian nouns of common gender. A feminine feature associated with the index \(i \) will denote a person if the referent is a person. A masculine feature with the index \(i \) will denote a male if the referent is male. Thus, feminine gender is compatible with both natural genders in Russian common gender nouns.

(65) SEMANTIC DENOTATION OF MASC/FEM (modified for Russian nouns of common gender)

a. [[GEN:f]]^{w,g} = \lambda x. \text{a \textit{person} in } w: x
b. [[GEN:m]]^{w,g} = \lambda x. \text{a \textit{male} in } w: x

Below I propose analyses of Russian animate and inanimate derivations.

2.6.1 An analysis of Russian animate derivations

In (66), \(D [\text{GEN}_.] \) cannot get valued by \(n \) because \(n \) has no gender feature. There are two options: (i) either FEM gender is a default, determined from [CLASS II], as in (67), or (ii) it is valued from the context depending on biological gender of the referent, as in Kučerová (forthcoming).
2.6.2 An analysis of Russian inanimate derivations

In (68), inanimate –ob, –ot derivations do not have the feature [PERSON], so they can only have gender as a default.

\[(68)\]

\[(a)\] grjaz-n-yj
\[\text{dirty-ADJ-MASC.NOM.SG} \]
\[\text{‘dirty’} \]
\[\Rightarrow \text{contextually determined gender from ref: [FEM] or [MASC]} \]
\[\text{D} \quad n \quad \Rightarrow \text{gender as a default from [CLASS II]→[FEM]} \]

\[(b)\] grjaz-n-ul-ja
\[\text{dirty-ADJ-EVAL-NOM.SG (MASC/FEM; CLASS II)} \]
\[\text{‘dirty person (affect)’} \]

\[(c)\] D
\[\text{D} \quad n \quad \Rightarrow \text{gender as a default from [CLASS II]→[FEM]} \]

\[\text{[PERSON]} \quad \qu
Failed agreement: A descriptive characterization (Preminger 2014: 12)

An utterance that is grammatical despite failing to adhere to what is an otherwise obligatory pattern of agreement in the language in question, and for which there is no grammatical variant where agreement surfaces normally, is an instance of failed agreement.

The AGREE operation is obligatory in syntax, modelled in terms of an obligatory operation (71).

FIND(f) (Preminger 2014, 96)

Given an unvalued feature f on a head H, look for an XP bearing a valued instance of f and assign that value to H.

According to Preminger (2014, 240–41), agreement can fail if a target with the requisite featural content is absent from the derivation. Crucially, these failures of agreement do not result in ungrammaticality (contra Chomsky 2000, 2001), only in the lack of valuation of the relevant features on the probe. For example, in (72), when the probe D with an unvalued gender feature [\text{GEN}__] encounters a goal n that lacks a gender feature, the operation FIND(f) will fail and there is no valuation of the gender feature on D.

In a configuration like (72), where α-agreement is impossible because of the outright absence of an appropriate target, grammaticality is still possible without α-agreement (see Preminger 2014: 220). Thus, in the Russian data, we observe two possible outcomes of a failed AGREEM relation:

(i) Gender is realized as a default (determined from declension [\text{CLASS}]); or
(ii) Gender is contextually determined via the feature [\text{PERSON}] on D, as proposed in Kučerova (forthcoming).

(70) Failed agreement: A descriptive characterization (Preminger 2014: 12)

An utterance that is grammatical despite failing to adhere to what is an otherwise obligatory pattern of agreement in the language in question, and for which there is no grammatical variant where agreement surfaces normally, is an instance of failed agreement.

The AGREE operation is obligatory in syntax, modelled in terms of an obligatory operation (71).

FIND(f) (Preminger 2014, 96)

Given an unvalued feature f on a head H, look for an XP bearing a valued instance of f and assign that value to H.

According to Preminger (2014, 240–41), agreement can fail if a target with the requisite featural content is absent from the derivation. Crucially, these failures of agreement do not result in ungrammaticality (contra Chomsky 2000, 2001), only in the lack of valuation of the relevant features on the probe. For example, in (72), when the probe D with an unvalued gender feature [\text{GEN}__] encounters a goal n that lacks a gender feature, the operation FIND(f) will fail and there is no valuation of the gender feature on D.

In a configuration like (72), where α-agreement is impossible because of the outright absence of an appropriate target, grammaticality is still possible without α-agreement (see Preminger 2014: 220). Thus, in the Russian data, we observe two possible outcomes of a failed AGREEM relation:

(i) Gender is realized as a default (determined from declension [\text{CLASS}]); or
(ii) Gender is contextually determined via the feature [\text{PERSON}] on D, as proposed in Kučerova (forthcoming).

(70) Failed agreement: A descriptive characterization (Preminger 2014: 12)

An utterance that is grammatical despite failing to adhere to what is an otherwise obligatory pattern of agreement in the language in question, and for which there is no grammatical variant where agreement surfaces normally, is an instance of failed agreement.

The AGREE operation is obligatory in syntax, modelled in terms of an obligatory operation (71).

FIND(f) (Preminger 2014, 96)

Given an unvalued feature f on a head H, look for an XP bearing a valued instance of f and assign that value to H.

According to Preminger (2014, 240–41), agreement can fail if a target with the requisite featural content is absent from the derivation. Crucially, these failures of agreement do not result in ungrammaticality (contra Chomsky 2000, 2001), only in the lack of valuation of the relevant features on the probe. For example, in (72), when the probe D with an unvalued gender feature [\text{GEN}__] encounters a goal n that lacks a gender feature, the operation FIND(f) will fail and there is no valuation of the gender feature on D.

In a configuration like (72), where α-agreement is impossible because of the outright absence of an appropriate target, grammaticality is still possible without α-agreement (see Preminger 2014: 220). Thus, in the Russian data, we observe two possible outcomes of a failed AGREEM relation:

(i) Gender is realized as a default (determined from declension [\text{CLASS}]); or
(ii) Gender is contextually determined via the feature [\text{PERSON}] on D, as proposed in Kučerova (forthcoming).

(72) FAILED GENDER AGREEMENT

D

\text{D} \Rightarrow \text{contextually-determined gender}

\text{D} \Rightarrow \text{gender as a default}

(73) FAILED GENDER AGREEMENT

D

\text{D} \Rightarrow \text{contextually-determined gender}

\text{D} \Rightarrow \text{gender as a default}
If the derivation proceeds cyclically (the approach for which I have argued in §2.4), \(\text{FIND}(f) \) is triggered upon the merger of an \(\varphi \)-bearing head in each cycle of the derivation (e.g., the \(n \)-cycle and the \(D \)-cycle in the structure (73) above). In the cyclicity approach, both outcomes (i) and (ii) above can be possible, hence mixed gender agreement. For example, when the example in (74a) refers to a male individual, mixed gender agreement can arise, as in (74b).

(74)

a. Èt-a grjaz-n-ul-ja vsě tut za-pač-k-al.
 this-FEM dirty.person-ADJ-EVAL-NOM,SG everything here PREF-make.dirty-PAST,MASC
 ‘This (FEM) dirty person (AFFECT) has made (MASC) everything dirty.’

b.
 \[
 \begin{array}{c}
 \text{D} \\
 \text{[PERSON] n a} \\
 \text{X} \\
 \text{[ANIM] grjaz-n-} \\
 \text{[CLASS II] ‘dirty’} \\
 \text{[GEN_]}
 \end{array}
 \]
 \[\text{D} \Rightarrow \text{contextually-determined gender: the referent is male } \rightarrow \text{[MASC]}\]
 \[\text{n} \Rightarrow \text{gender as a default: [CLASS II] } \rightarrow \text{[FEM]}\]

3. Conclusions

I have analyzed Russian evaluative suffixes, as in Table 5, in the framework of Distributed Morphology.

<table>
<thead>
<tr>
<th>Evaluative suffixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affectionate suffixes</td>
</tr>
<tr>
<td>Vulgar suffixes</td>
</tr>
</tbody>
</table>

Table 5: Russian evaluative suffixes (from Steriopolo 2008, 62)

I have argued that the suffixes in question are nominalizing heads, \(n \), that attach above categorized roots (v/a/n), as in (75):

(75)
 \[
 \begin{array}{c}
 \text{n} \\
 \text{v/a/n} \\
 \text{[EVAL]} \\
 \text{v/a/n} \sqrt{\text{root}}
 \end{array}
 \]

The majority of the suffixes (except -ob, -ot) are specified for the feature [ANIMATE]. All suffixes are specified for the feature declension [CLASS] but have no gender feature, as in (76) (unlike other nominals that can have both [CLASS] and [GENDER] features).

(76)

BUNDLES OF FEATURES FOR EVALUATIVE SUFFIXES

(i) animate suffixes: \(n, \text{[EVAL]}, \text{[ANIMATE]}, \text{[CLASS]} \)

(ii) inanimate suffixes: \(n, \text{[EVAL]}, \text{[CLASS]} \)
Grammatical gender can either be realized as a default, determined from \([\text{CLASS}]\), or it can be contextually determined via \(D[\text{PERSON}]\), as in (77).

\[
(77) \quad \begin{array}{c}
\text{D} \\
\text{D} \quad \text{n} \\
\text{[PERSON]} \\
\text{n} \quad \text{v/a/n} \\
\text{[EVAL][ANIM][CLASS]} \\
\text{v/a/n} \quad \sqrt{\text{root}}
\end{array} \quad \Rightarrow \quad \text{contextually-determined gender}
\]

\[
\begin{array}{c}
\text{D} \\
\text{D} \quad \text{n} \\
\text{[PERSON]} \\
\text{n} \quad \text{v/a/n} \\
\text{[EVAL][ANIM][CLASS]} \\
\text{v/a/n} \quad \sqrt{\text{root}}
\end{array} \quad \Rightarrow \quad \text{gender as a default}
\]

This research has contributed to a number of “hot” debates in the current literature concerning the interaction between gender, animacy, and declension class; interpretability of gender features; default gender; and mixed gender agreement.

References

http://doi.org/10.1007/s11525-010-9156-3

http://doi.org/10.1017/CBO9780511794346

http://doi.org/10.1162/002438900554370

[doi](http://doi.org/10.1017/CBO9781139166119)

[doi](http://doi.org/10.1111/j.1467-9612.2011.00154.x)

[doi](http://doi.org/10.1515/9783110877052)

[doi](http://doi.org/10.7551/mitpress/9780262014229.001.0001)

[doi](http://doi.org/10.1515/tl-2012-0003)

[doi](http://doi.org/10.1075/cilt.270.03emb)

[doi](http://doi.org/10.1093/oxfordhb/9780199247455.013.0010)

[doi](http://doi.org/10.1007/978-94-017-3714-2_5)

[doi](http://doi.org/10.1016/j.langsci.2013.10.004)

[doi](http://doi.org/10.1093/acprof:oso/9780199679935.001.0001)

[doi](http://doi.org/10.1007/s11049-015-9319-3)

author: Olga Steriopolo

affiliation: Leibniz-Zentrum für Allgemeine Sprachwissenschaft (ZAS), Berlin

email: steriopolo@zas.gwz-berlin.de