CryoSat-2 waveform classification for melt event monitoring

Authors

DOI:

https://doi.org/10.7557/18.6284

Keywords:

deep learning, surface mass balance, melt dynamics, Greenland, ice sheet, Cryosat-2, MODIS

Abstract

Measuring the mass balance of ice sheets is important with respect to understanding among others sea level rise, glacier dynamics, global ocean circulation and marine ecosystems. One important parameter of the mass balance is surface melt, which can be estimated from different satellite data sources. In this study we investigate the potential of utilizing machine learning techniques for CryoSat-2 (CS2) radar altimeter waveform classification in order to derive melt information. Training data is derived by spatio-temporally matching of CS2 measurements with MODIS land surface temperature measurements. We propose a time convolution network with a fully connected classifier tail for CS2 waveform classifcation. In addition a non-deep learning model is implemented, providing a baseline. One of the main challenges is the high class imbalance, as surface temperatures on the interior of Greenland rarely reach the freezing point. The model performance is measured by several metrics: F1 score, average recall and Matthews correlation coefficient. The results of this proof of concept study indicate feasibility.

References

X. Fettweis, B. Franco, M. Tedesco, J. Van Angelen, J. T. Lenaerts, M. R. van den Broeke, and H. Gallee. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model mar. The Cryosphere, 7(2):469–489, 2013. DOI: 10.5194/TC-7-469-2013.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen. Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sensing of Environment, 112(10):3739–3749, 2008. DOI: 10.1016/j.rse.2008.05.007.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770– 778, 2016. DOI: 10.1109/CVPR.2016.90.

C. Justice, J. Townshend, E. Vermote, E. Masuoka, R. Wolfe, N. Saleous, D. Roy, and J. Morisette. An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83(1):3–15, 2002. DOI: 10.1016/S0034-4257(02)00084-6. The Moderate Resolution Imaging Spectroradiometer (MODIS): a new generation of Land Surface Monitoring.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman. 1D convolutional neural networks and applications: A survey. Mechanical systems and signal processing, 151:107398, 2021. DOI: 10.1016/j.ymssp.2020.107398. (ELNANO), pages 688–693. IEEE, 2020. DOI: 10.1109/ELNANO50318.2020.9088863.

T. T. Le, W. Fu, and J. H. Moore. Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics, 36(1):250–256, 2020. DOI: 10.1093/bioinformatics/btz470.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015. DOI: 10.1038/nature14539.

S. Lee, J. Im, J. Kim, M. Kim, M. Shin, H.-c. Kim, and L. J. Quackenbush. Arctic sea ice thickness estimation from CryoSat-2 satellite data using machine learning-based lead detection. Remote Sensing, 8(9):698, 2016. DOI: 10.3390/rs8090698.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 847–855, 2013. DOI: 10.1145/2487575.2487629.

L. D. Trusel, K. E. Frey, S. B. Das, P. K. Munneke, and M. R. Van Den Broeke. Satellite-based estimates of Antarctic surface meltwater fluxes. Geophysical Research Letters, 40(23):6148–6153, 2013. DOI: 10.1002/2013GL058138.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2):318–327, 2020. DOI: 10.1109/TPAMI.2018.2858826.

T. Parrinello, A. Shepherd, J. Bouffard, S. Badessi, T. Casal, M. Davidson, M. Fornari, E. Maestroni, and M. Scagliola. CryoSat: ESA’s ice mission–Eight years in space. Advances in Space Research, 62(6):1178–1190, 2018. DOI: 10.1016/j.asr.2018.04.014.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

T. Slater, A. Shepherd, M. McMillan, T. W. Armitage, I. Otosaka, and R. J. Arthern. Compensating changes in the penetration depth of pulse-limited radar altimetry over the Greenland ice sheet. IEEE Transactions on Geoscience and Remote Sensing, 2019. DOI: 10.1109/TGRS.2019.2928232.

R. A. Solovyev, M. Vakhrushev, A. Radionov, I. I. Romanova, A. A. Amerikanov, V. Aliev, and A. A. Shvets. Deep learning approaches for understanding simple speech commands. In 2020 IEEE 40th International Conference on Electronics and Nanotechnology

Downloads

Published

2022-03-28