Reducing Annotator's Burden: Cross-Pseudo Supervision for Brain Tumor Segmentation


  • Lidia Luque Oslo University Hospital
  • Jon André Ottesen Oslo University Hospital
  • Atle Bjørnerud Oslo University Hospital
  • Kyrre Eeg Emblem Oslo University Hospital
  • Bradley J. MacIntosh Oslo University Hospital



Semi-supervision, CPS, Cross-pseudo , BraTS, Deep-learning, Glioblastoma, Glioma, Segmentation, U-Net, UNetR, MRI


Deep learning is proven to help with common medical image processing procedures, namely segmentation. Labeling data is a core requirement for training a deep learning model; this is time-consuming and expert annotators are in short supply. Strategies that lower data annotation requirements are highly desirable. In this study, we adapt cross-pseudo supervision (CPS) for 3D medical segmentation, a state-of-art semi-supervised deep-learning method where labeled and unlabeled data are used in conjunction to further improve the resulting model. Using the 2021 BraTS dataset, a fully labeled publicly available brain tumor dataset, we train CPS-based networks using a varying number of labeled and unlabeled samples and compare the resulting models against the fully-supervised baseline. The results show that CPS improves performance scores across all combinations of dataset sizes, with an increase in the Dice similarity coefficient (DSC) of 2.6-4.2% and a decrease in the 95th percentile Hausdorff distance (95% HD) of 24-27%.


M. Ahmad, D. Ai, G. Xie, S. F. Qadri, H. Song, Y. Huang, Y. Wang, and J. Yang. Deep belief network modeling for automatic liver segmentation. IEEE Access, 7:20585–20595, 2019. ISSN 21693536. doi: 10.1109/ACCESS.2019.2896961.

F. H. Araújo, R. R. Silva, D. M. Ushizima, M. T. Rezende, C. M. Carneiro, A. G. C. Bianchi, and F. N. Medeiros. Deep learning for cell image segmentation and ranking. Computerized Medical Imaging and Graphics, 72:13–21, 3 2019. ISSN 0895-6111. doi: 10.1016/J.COMPMEDIMAG.2019.01.003.

P. Bachman, O. Alsharif, and D. Precup. Learning with pseudo-ensembles. Advances in Neural Information Processing Systems, 27, 2014. doi: 10.48550/arXiv.1412.4864.

W. Bai, W. Shi, D. P. O’Regan, T. Tong, H. Wang, S. Jamil-Copley, N. S. Peters, and D. Rueckert. A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac mr images. IEEE transactions on medical imaging, 32:1302–1315, 2013. ISSN 1558-254X. doi: 10.1109/TMI.2013.2256922.

U. Baid, S. Ghodasara, S. Mohan, M. Bilello, E. Calabrese, E. Colak, K. Farahani, J. KalpathyCramer, F. C. Kitamura, S. Pati, L. M. Prevedello, J. D. Rudie, C. Sako, R. T. Shinohara, T. Bergquist, R. Chai, J. Eddy, J. Elliott, W. Reade, T. Schaffter, T. Yu, J. Zheng, A. W. Moawad, L. O. Coelho, O. McDonnell, E. Miller, F. E. Moron, M. C. Oswood, R. Y. Shih, L. Siakallis, Y. Bronstein, J. R. Mason, A. F. Miller, G. Choudhary, A. Agarwal, C. H. Besada, J. J. Derakhshan, M. C. Diogo, D. D. Do-Dai, L. Farage, J. L. Go, M. Hadi, V. B. Hill, M. Iv, D. Joyner, C. Lincoln, E. Lotan, A. Miyakoshi, M. Sanchez-Montano, J. Nath, X. V. Nguyen, M. NicolasJilwan, J. O. Jimenez, K. Ozturk, B. D. Petrovic, C. Shah, L. M. Shah, M. Sharma, O. Simsek, A. K. Singh, S. Soman, V. Statsevych, B. D. Weinberg, R. J. Young, I. Ikuta, A. K. Agarwal, S. C. Cambron, R. Silbergleit, A. Dusoi, A. A. Postma, L. Letourneau-Guillon, G. J. G. PerezCarrillo, A. Saha, N. Soni, G. Zaharchuk, V. M. Zohrabian, Y. Chen, M. M. Cekic, A. Rahman, J. E. Small, V. Sethi, C. Davatzikos, J. Mongan, C. Hess, S. Cha, J. Villanueva-Meyer, J. B. Freymann, J. S. Kirby, B. Wiestler, P. Crivellaro, R. R. Colen, A. Kotrotsou, D. Marcus, M. Milchenko, A. Nazeri, H. Fathallah-Shaykh, R. Wiest, A. Jakab, M.-A. Weber, A. Mahajan, B. Menze, A. E. Flanders, and S. Bakas. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. 7 2021. doi: 10.48550/arxiv.2107.02314.

X. Chen, Y. Yuan, G. Zeng, and J. Wang. Semi-supervised semantic segmentation with cross pseudo supervision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 2613–2622, 6 2021. ISSN 10636919. doi: 10.48550/arxiv.2106.01226.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. The International Conference on Learning Representations (ICLR), 2021. doi: 10.48550/arXiv.2010.11929.

T. Falk, D. Mai, R. Bensch, Özgün Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J. Deubner, Z. Jäckel, K. Seiwald, A. Dovzhenko, O. Tietz, C. D. Bosco, S. Walsh, D. Saltukoglu, T. L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T. Brox, and O. Ronneberger. U-net: deep learning for cell counting, detection, and morphometry. Nature Methods, 16:67–70, 12 2018. ISSN 1548-7105. doi: 10.1038/S41592-018-0261-2.

D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao. Inf-net: Automatic covid-19 lung infection segmentation from ct images. IEEE Transactions on Medical Imaging, 39: 2626–2637, 8 2020. ISSN 1558254X. doi: 10.1109/TMI.2020.2996645.8.

A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H. R. Roth, and D. Xu. Unetr: Transformers for 3d medical image segmentation. Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, pages 1748–1758, 3 2021. doi: 10.48550/arxiv.2103.10504.

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong. Automatic 3d liver segmentation based on deep learning and globally optimized surface evolution. Physics in Medicine Biology, 61:8676, 11 2016. ISSN 0031-9155. doi: 10.1088/1361-6560/61/24/8676.

F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein. nnu-net: a self-configuring method for deep learning based biomedical image segmentation. Nature Methods 2020 18:2, 18: 203–211, 12 2020. ISSN 1548-7105. doi: 10.1038/S41592-020-01008-Z.

J. Jiang, Y. C. Hu, C. J. Liu, D. Halpenny, M. D. Hellmann, J. O. Deasy, G. Mageras, and H. Veeraraghavan. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from ct images. IEEE Transactions on Medical Imaging, 38:134–144, 1 2019. ISSN 1558254X. doi: 10.1109/TMI.2018.2857800.

Kurnianingsih, K. H. S. Allehaibi, L. E. Nugroho, Widyawan, L. Lazuardi, A. S. Prabuwono, and T. Mantoro. Segmentation and classification of cervical cells using deep learning. IEEE Access, 7: 116925–116941, 2019. ISSN 21693536. doi: 10.1109/ACCESS.2019.2936017.

D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. International Conference on Machine Learning Workshops (ICMLW), 2013.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9351:234 241, 2015. ISSN 16113349. doi: 10.1007/978-3-319-24574-4 28.

M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization with stochastic transformations and perturbations for deep semi-supervised learning. Advances in Neural Information Processing Systems, pages 1171–1179, 6 2016. ISSN 10495258. doi: 10.48550/arxiv.1606.04586.

K. Sirinukunwattana, S. E. Raza, Y. W. Tsang, D. R. Snead, I. A. Cree, and N. M. Rajpoot. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Transactions on Medical Imaging, 35:1196-1206, 5 2016. ISSN 1558254X. doi: 10.1109/TMI.2016.2525803.

Y. Song, E. L. Tan, X. Jiang, J. Z. Cheng, D. Ni, S. Chen, B. Lei, and T. Wang. Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Transactions on Medical Imaging, 36:288–300, 1 2017. ISSN 1558254X. doi: 10.1109/TMI.2016.2606380.

X. Tang, E. J. Rangraz, W. Coudyzer, J. Bertels, D. Robben, G. Schramm, W. Deckers, G. Maleux, K. Baete, C. Verslype, M. J. Gooding, C. M. Deroose, and J. Nuyts. Whole liver segmentation based on deep learning and manual adjustment for clinical use in sirt. European Journal of Nuclear Medicine and Molecular Imaging, 47:2742–2752, 11 2020. ISSN 16197089. doi: 10.1007/S00259-020-04800-3.

B. H. Thompson, G. D. Caterina, and J. P. Voisey. Pseudo-label refinement using superpixels for semi-supervised brain tumour segmentation. Proceedings - International Symposium on Biomedical Imaging, 2022-March, 10 2021. ISSN 19458452. doi: 10.1109/ISBI52829.2022.9761681.9.

A. Vakanski, M. Xian, and P. E. Freer. Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound in Medicine Biology, 46:2819–2833, 10 2020. ISSN 0301-5629. doi: 10.1016/J.ULTRASMEDBIO.2020.06.015.

X. Wang, Y. Yuan, D. Guo, X. Huang, Y. Cui, M. Xia, Z. Wang, C. Bai, and S. Chen. Ssa-net: Spatial self-attention network for covid-19 pneumonia infection segmentation with semi-supervised few-shot learning. Medical Image Analysis, 79:102459, 7 2022. ISSN 1361-8415. doi: 10.1016/J.MEDIA.2022.102459.

Z. Zheng, X. Wang, X. Zhang, Y. Zhong, X. Yao, Y. Zhang, and Y. Wang. Semi-supervised segmentation with self-training based on quality estimation and refinement. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12436 LNCS:30–39, 2020. ISSN 16113349. doi: 10.1007/978-3-030-59861-7_4.