Low-Resource Active Learning of North Sámi Morphological Segmentation
DOI:
https://doi.org/10.7557/5.3465Abstract
Many Uralic languages have a rich morphological structure, but lack tools of morphological analysis needed for efficient language processing. While creating a high-quality morphological analyzer requires a significant amount of expert labor, data-driven approaches may provide sufficient quality for many applications.We study how to create a statistical model for morphological segmentation of North Sámi language with a large unannotated corpus and a small amount of human-annotated word forms selected using an active learning approach. For statistical learning, we use the semi-supervised Morfessor Baseline and FlatCat methods. Aer annotating 237 words with our active learning setup, we improve morph boundary recall over 20% with no loss of precision.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).