Skip to main navigation menu Skip to main content Skip to site footer

Cruise Reports

Vol. 9 (2021)

Hot Vents in an Ice-Covered Ocean - HACON21 expedition

  • Stefan Bünz
  • Eva Ramirez-Llodra
DOI
https://doi.org/10.7557/cage.6715
Submitted
23 September 2022
Published
31-10-2022

Abstract

The HACON cruise is a major component of the FRINATEK HACON project, which aims at investigating the role of the Gakkel Ridge and Arctic Ocean in biological connectivity amongst ocean basins and global biogeography of chemosynthetic ecosystems. The HACON cruise was designed to conduct a multidisciplinary survey of the Aurora seamount centred around the identified black smokers in 2014. The scientific goal was to obtain visual and physical samples of the different habitats on the seamount to better understand hydrothermal vent communities on the Gakkel ridge and abyssal communities of an Arctic seamount, to assess the sphere of influence of the Aurora vent field across the seamount and adjacent seafloor regions.

The cruise may be known as: Hacon21

References

  1. Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J., & Evans, J. (2015). A new bathymetry of the NE Greenland continental shelf: Constraints on glacial and other processes. Geochem, Geophy, Geosystems 16:3733-3753. https://doi.org/10.1002/2015GC005931
  2. Arndt, J. E., Jokat, W., & Dorschel, B. (2017). The last glaciation and deglaciation of the Northeast Greenland continental shelf revealed by hydro-acoustic data. Quaternary Science Reviews, 160, 45-56. https://doi.org/10.1016/j.quascirev.2017.01.018
  3. Boetius, A., W Bach, C Borowski, A Diehl, C German, N Kaul, J Köhler, Y Marcon, C Mertens, M Molari, V Schlindwein, A Türke, G Wegener and Science Party of RV POLARSTERN Expedition Aurora PS86 (2014). Exploring the Habitability of Ice-covered Waterworlds: The Deep-Sea Hydrothermal System of the Aurora Mount at Gakkel Ridge, Arctic Ocean (82°54' N, 6°15W, 4000 m). AGU Fall Meeting. B24A-02.
  4. Cardenas P, Rapp HT. 2015. Demosponges from the northern Mid-Atlantic Ridge shed more light on the diversity and biogeography of North Atlantic deep-sea sponges. Journal of the Marine Biological Association of the UK. 95(7): 1475-1517. https://doi.org/10.1017/S0025315415000983
  5. Edmonds, H.N., Michael, P.J., Baker, E.T., Connelly D.P., Snow J.E., Langmuir, C.H., Dick, H.J.B., German, C.R. & Graham, D.W. (2003). Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421: 252-256. https://doi.org/10.1038/nature01351
  6. Eilertsen MH, Georgieva MN, Kongsrud JA, Wiklund H, Glover AG, Rapp HT. 2018. Genetic connectivity from the Arctic to the Antarctic: Sclerolinum contortum and Nicomache lokii (Annelida) are both widespread in reducing environments. Scientific Reports 8:4810. https://doi.org/10.1038/s41598-018-23076-0
  7. Evans, J., Ó Cofaigh, C., Dowdeswell, J. A., & Wadhams, P. (2009). Marine geophysical evidence for former expansion and flow of the Greenland Ice Sheet across the north-east Greenland continental shelf. Journal of Quaternary Science: Published for the Quaternary Research Association, 24(3), 279-293. https://doi.org/10.1002/jqs.1231
  8. German et al. (2010) Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. PNAS, 102(32) pp14020-14025. https://doi.org/10.1073/pnas.1009205107
  9. German C.R., and Seyfried W.E. (2014) Hydrothermal Processes. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 8, pp. 191-233. Oxford: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00607-0
  10. German, C.R., Boetius A. and the Scientific Teams of PS86 and PS101 (2017). Keynote: Hydrothermal exploration of the Gakkel Ridge, 2014 and 2016. Goldschmidt Conference, Paris.
  11. Hestetun JT, Tompkins-MacDonald G, Rapp HT. 2017. A review of carnivorous sponges from the boreal North Atlantic and Arctic Oceans. Zoological Journal of the Linnean Society. 181(1): 1-69. https://doi.org/10.1093/zoolinnean/zlw022
  12. Jakobsson, M., Mayer, L.A., Bringensparr, C. et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Sci Data 7, 176 (2020). https://doi.org/10.1038/s41597-020-0520-9
  13. Kongsrud JA, Eilertsen MH, Alvestad T, Rapp HT. 2017. Two new species of Ampharetidae (Polychaeta) from the Loki Castle vent field. Deep-Sea Research Part II 137: 232-245. https://doi.org/10.1016/j.dsr2.2016.08.015
  14. Michael, P.J., Langmuir, C.H., Dick, H.J.B., Snow, J.E., Goldstein, S.L., Graham, D.W., Lehnert, K., Kurras, G., Jokat, W., Mühe R., and Edmonds, H.N. (2003). Magmatic and amagmatic seafloor generation at the ultra-slow spreading Gakkel ridge, Arctic Ocean. Nature 423: 956-962. https://doi.org/10.1038/nature01704
  15. Laberg, J. S., Forwick, M., Husum, K. (2017). New geophysical evidence for a revised maximum position of part of the NE sector of the Greenland ice sheet during the last glacial maximum. Arktos, 3(3). https://doi.org/10.1007/s41063-017-0029-4
  16. Pedersen RB, Rapp HT, Thorseth IH, Lilley M, Barriga F, Baumberger T, Flesland K, Fonseca R, Früh- Green GL, Jørgensen SL. 2010. Discovery of a black smoker field and a novel vent fauna at the ultraslow spreading Arctic Mid-Ocean Ridges. Nature Communications. https://doi.org/10.1038/ncomms1124
  17. Reeves, E.P., Seewald, J.S., Saccocia, P., Bach, W., Craddock, P.R., Shanks, W.C., et al. (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Ac 75: 1088-1123. https://doi.org/10.1016/j.gca.2010.11.008
  18. Roberts EM, Mienis F, Rapp HT, Hanz U, Meyer HK, Davies AJ. 2018. Oceanographic setting and short-timescale environmental variability at an Arctic seamount sponge ground. Deep-Sea Research I 138: 98-113. https://doi.org/10.1016/j.dsr.2018.06.007
  19. Saur, J., Duling, S., Roth, L., Jia, X., Strobel, D. F., Feldman, P. D., Christensen, U. R., Retherford, K. D., McGrath, M. A., Musacchio, F., Wennmacher, A., Neubauer, F. M., Simon, S., and Hartkorn, O. (2015), The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Physics, 120, 1715- 1737. https://doi.org/10.1002/2014JA020778
  20. Schander C, Rapp HT, Kongsrud JA, Bakken T, Berge J, Cochrane S, Oug E, Byrkjedal I, Cedhagen T, Fosshagen A, Gebruk A, Larsen K, Nygren A, Obst M, Plejel F, Stöhr S, Todt C, Warén A, Handler- Jacobsen S, Kuening R, Levin L, Mikkelsen NT, Petersen KK, Thorseth I, Pedersen RB. 2010. The fauna of the hydrothermal vents on the Mohn Ridge (North Atlantic). Marine Biology Research 6(2): 155-171. https://doi.org/10.1080/17451000903147450
  21. Seewald J. S., Doherty K. W., Hammar T. R. and Liberatore S. P. (2002) A new gas-tight isobaric sampler for hydrothermal fluids. Deep Sea Res. Part I 49(1), 189-196.Waite et al., 2017. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science 356: 155-159. https://doi.org/10.1016/S0967-0637(01)00046-2
  22. Steen IH, Dahle H, Stokke R, Roalkvam I, Daae FL, Rapp HT, Pedersen RB, Thorseth IH. 2016. Novel barite chimneys at the Loki's Castle Vent Field shed light on key factors shaping microbial communities and functions in hydrothermal systems. Frontiers in Microbiology Vol 6, article 1510. https://doi.org/10.3389/fmicb.2015.01510
  23. Tandberg AHS, Vader W, Olsen BR, Rapp HT. 2018. Monoculodes bousfieldi n. sp. from the Arctic hydrothermal vent Loki's Castle. Marine Biodiversity 48(2): 927-937. https://doi.org/10.1007/s12526-018-0869-6
  24. Tandberg AHS, Olsen BR, Rapp HT. 2017. Amphipods from the arctic hydrothermal vent field «Loki's Castle», Norwegian Sea. Biodiversity Journal 8(2): 553-554.
  25. Tandberg AHS, Rapp HT, Schander C, Vader W. 2013. A new species of Exitomelita (Amphipoda: Melitidae) from a deep water woodfall in the northern Norwegian Sea. Journal of Natural History. 47(25-28): 1875-1889. https://doi.org/10.1080/00222933.2012.725778
  26. Winkelmann, D., Jokat, W., Jensen, L., Schenke, H.W. (2010). Submarine end moraines on the continental shelf off NE Greenland - Implications for Lateglacial dynamics. Quaternary Science Reviews, 29/9-10, pp., pp. 1069- 1077. https://doi.org/10.1016/j.quascirev.2010.02.002