Skip to main navigation menu Skip to main content Skip to site footer

Cruise Reports

Vol. 2 (2014)

CAGE14-1 Cruise Report: CAGE research school in Arctic Marine Geology and Geophysics

  • Stefan Bünz
  • Giuliana Panieri
DOI
https://doi.org/10.7557/cage.6898
Submitted
9 January 2023
Published
24-01-2023

Abstract

Cruise CAGE 14-1 is one of several cruises in 2014 that will be carried out to collect cross-disciplinary data for addressing the objectives of the Norwegian Centre for Arctic Gas Hydrate, Environment and Climate, CAGE. The Norwegian Research Council funds CAGE for a period of 10 years to addressee main scientific questions about gas hydrate environments in Arctic regions.

Cruise CAGE 14-1 was also hosting this year’s AMGG research school cruise with 14 PhD students participating, most of them from CAGE. The cruise focused on acquisition of seismic, oceanographic, atmospheric, geochemical and sediment and benthic fauna sampling data from three target areas:

the shallow shelf and shelf edge methane seepage sites at Prins Karls Foreland
a sediment drift on the western flank of the Knipovich Ridge
the Vestnesa Ridge

Research objectives were planned long the goals of CAGE and its individual work packages, and the teaching would be organized along these goals.

Scientific problems that are to be addressed in these two key target areas include the periodicity of seepage (i.e. time scales of active, inactive and reactivated systems), quantification of methane concentrations in surface sediments, water column and above the sea surface, gas and hydrates, the nature of gas sources, and the benthic communities occurring at the seep sites.

Specific objectives of cruise CAGE 14-1 were as follows:

Hydro-acoustic mapping of methane bubble plumes above shallow and deep-water vent fields.
Seismic surveying and multibeam mapping across the contours of the Svyatogor Rise.
Sediment sampling using gravity, box and multi-corer for sediment and pore-water geochemical analyses
Sampling of benthic fauna at several seep sites and reference stations in all three target areas.
Acquisition of oceanographic data for measuring oceanographic conditions and methane concentrations in the water column, particularly at the shallow shelf sites.

The cruise may be known as: CAGE14_1

References

  1. Ambrose, W. G., Renaud, P. E., Locke, W. L., Cottier, F. R., Berge, J., Carroll, M. L., Levin, B., & Ryan, S. (2012). Growth line deposition and variability in growth of two circumpolar bivalves (Serripes groenlandicus, and Clinocardium ciliatum). Polar Biology, 35(3), 345-354. https://doi.org/10.1007/s00300-011-1080-4
  2. Anisimov, O. A., Vaughan, D. G., Callaghan, T. V., Furgal, C., Marchant, H., Prowse, T. D., ... & Walsh, J. E. (2007). Polar regions (arctic and antarctic). Climate change, 15, 653-685.
  3. Berge, J., Johnsen, G., Nilsen, F., Gulliksen, B., & Slagstad, D. (2005). Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after 1000 year absence. Marine Ecology-Progress Series - MAR ECOL-PROGR SER, 303, 167-175. https://doi.org/10.3354/meps303167
  4. Berge, J., Renaud, P. E., Eiane, K., Gulliksen, B., Cottier, F. R., Varpe, Ø., & Brattegard, T. (2009). Changes in the decapod fauna of an Arctic fjord during the last 100 years (1908-2007). Polar Biology, 32(7), 953-961. https://doi.org/10.1007/s00300-009-0594-5
  5. Berndt, C., Bunz, S., Clayton, T., Mienert, J., & Saunders, M. (2004). Seismic character of bottom simulating reflectors: Examples from the mid-Norwegian margin. Marine and Petroleum Geology, 21(6), Article 6. https://doi.org/10.1016/j.marpetgeo.2004.02.003
  6. Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V., Dumke, I., Dünnbier, K., Ferré, B., Graves, C., Gross, F., Hissmann, K., Hühnerbach, V., Krause, S., Lieser, K., Schauer, J., & Steinle, L. (2014a). Temporal constraints on hydrate-controlled methane seepage off Svalbard. https://doi.org/10.1126/science.1246298
  7. Biddle, K. T., & Wielchowsky, C. C. (1994). Hydrocarbon Traps: Chapter 13: Part III. Processes. 77, 219-235.
  8. Black, M. B., Halanych, K. M., Maas, P. A. Y., Hoeh, W. R., Hashimoto, J., Desbruyères, D., Lutz, R. A., & Vrijenhoek, R. C. (1997). Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Marine Biology, 130(2), 141-149. https://doi.org/10.1007/s002270050233
  9. Boetius, A., & Suess, E. (2004). Hydrate Ridge: A natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chemical Geology, 205(3), 291-310. https://doi.org/10.1016/j.chemgeo.2003.12.034
  10. Borowski, W. S., Paull, C. K., & Ussler, W., III. (1996). Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24(7), 655-658. https://doi.org/10.1130/0091-7613(1996)024%3C0655:MPWSPI%3E2.3.CO;2
  11. Brown, A. R. (2011). Interpretation of Three-Dimensional Seismic Data, Seventh edition. Society of Exploration Geophysicists and American Association of Petroleum Geologists. https://doi.org/10.1190/1.9781560802884
  12. Bünz, S., Petersen, J., Hustoft, S., & Mienart, J. (2008). Environmentally-sensitive gas hydrates on the W-Svalbard margin at the gateway to the Arctic Ocean. https://www.osti.gov/etdeweb/biblio/21104859
  13. Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C., & Mienert, J. (2012). Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. Marine Geology, 332-334, 189-197. https://doi.org/10.1016/j.margeo.2012.09.012
  14. Carroll, M. L., Johnson, B. J., Henkes, G. A., McMahon, K. W., Voronkov, A., Ambrose, W. G., & Denisenko, S. G. (2009). Bivalves as indicators of environmental variation and potential anthropogenic impacts in the southern Barents Sea. Marine Pollution Bulletin, 59(4), 193-206. https://doi.org/10.1016/j.marpolbul.2009.02.022
  15. Cathles, L., Su, Z., & Chen, D. (2010). The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Marine and Petroleum Geology, 27, 82-91. https://doi.org/10.1016/j.marpetgeo.2009.09.010
  16. Chand, S., Rise, L., Ottesen, D., Dolan, M. F. J., Bellec, V., & Bøe, R. (2009). Pockmark-like depressions near the Goliat hydrocarbon field, Barents Sea: Morphology and genesis. Marine and Petroleum Geology, 26(7), 1035-1042. https://doi.org/10.1016/j.marpetgeo.2008.09.002
  17. Chand, S., Thorsnes, T., Rise, L., Brunstad, H., Stoddart, D., Bøe, R., Lågstad, P., & Svolsbru, T. (2012). Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate accumulation. Earth and Planetary Science Letters, 331-332, 305-314. https://doi.org/10.1016/j.epsl.2012.03.021
  18. Christiansen, J. S., Mecklenburg, C. W., & Karamushko, O. V. (2014). Arctic marine fishes and their fisheries in light of global change. Global Change Biology, 20(2), 352-359. https://doi.org/10.1111/gcb.12395
  19. Clark, M. R., & Rowden, A. A. (2009). Effect of deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand. Deep Sea Research Part I: Oceanographic Research Papers, 56(9), 1540-1554. https://doi.org/10.1016/j.dsr.2009.04.015
  20. Clarke, A., & Harris, C. M. (2003). Polar marine ecosystems: Major threats and future change. Environmental Conservation, 30(1), 1-25. https://doi.org/10.1017/S0376892903000018
  21. Cochrane, S. K. J., Pearson, T. H., Greenacre, M., Costelloe, J., Ellingsen, I. H., Dahle, S., & Gulliksen, B. (2012). Benthic fauna and functional traits along a Polar Front transect in the Barents Sea - Advancing tools for ecosystem-scale assessments. Journal of Marine Systems, 94, 204-217. https://doi.org/10.1016/j.jmarsys.2011.12.001
  22. Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., & Griffiths, C. (2005). Water mass modification in an Arctic fjord through cross-shelf exchange: The seasonal hydrography of Kongsfjorden, Svalbard. Journal of Geophysical Research: Oceans, 110(C12). https://doi.org/10.1029/2004JC002757
  23. Dando, P. R., Southward, A. J., Southward, E. C., Lamont, P., & Harvey, R. (2008a). Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 55(8), 966-996. https://doi.org/10.1016/j.dsr.2008.04.002
  24. Eiken, O., & Hinz, K. (1993). Contourites in the Fram Strait. Sedimentary Geology, 82(1), 15-32. https://doi.org/10.1016/0037-0738(93)90110-Q
  25. Engen, Ø., Faleide, J. I., & Dyreng, T. K. (2008). Opening of the Fram Strait gateway: A review of plate tectonic constraints. Tectonophysics, 450(1), 51-69. https://doi.org/10.1016/j.tecto.2008.01.002
  26. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., & Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43(7), 1075-1090. https://doi.org/10.1016/0016-7037(79)90095-4
  27. Gage, J. D. (1996). Why are there so many species in deep-sea sediments? Journal of Experimental Marine Biology and Ecology, 200(1), 257-286. https://doi.org/10.1016/S0022-0981(96)02638-X
  28. Gentz, T., Damm, E., Schneider von Deimling, J., Mau, S., McGinnis, D. F., & Schlüter, M. (2014). A water column study of methane around gas flares located at the West Spitsbergen continental margin. Continental Shelf Research, 72, 107-118. https://doi.org/10.1016/j.csr.2013.07.013
  29. Granin, N. G., Muyakshin, S. I., Makarov, M. M., Kucher, K. M., Aslamov, I. A., Granina, L. Z., & Mizandrontsev, I. B. (2012). Estimation of methane fluxes from bottom sediments of Lake Baikal. Geo-Marine Letters, 32(5), 427-436. https://doi.org/10.1007/s00367-012-0299-6
  30. Gulliksen, B., Holte, B., & Jakola, K. J. (1985). The soft bottom fauna in Van Mijenfjord and Raudfjord, Svalbard. Marine biology of polar regions and effects of stress on marine organisms. Wiley, New York, 199-215.
  31. Halanych, K. M. (2005). Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): A review. Hydrobiologia, 535(1), 297-307. https://doi.org/10.1007/s10750-004-1437-6
  32. Hamilton, L. J., & Parnum, I. (2011). Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves. Continental Shelf Research, 31(2), 138-148. https://doi.org/10.1016/j.csr.2010.12.002
  33. Hell, B. (2011). Mapping bathymetry: From measurement to applications. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-57291
  34. Hilário, A., Capa, M., Dahlgren, T. G., Halanych, K. M., Little, C. T. S., Thornhill, D. J., Verna, C., & Glover, A. G. (2011). New Perspectives on the Ecology and Evolution of Siboglinid Tubeworms. PLOS ONE, 6(2), e16309. https://doi.org/10.1371/journal.pone.0016309
  35. Hovland, M., Gardner, J. V., & Judd, A. G. (2002). The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2(2), 127-136. https://doi.org/10.1046/j.1468-8123.2002.00028.x
  36. Howe, J. A., Shimmield, T. M., Harland, R., & Eyles, N. (2008). Late Quaternary contourites and glaciomarine sedimentation in the Fram Strait. Sedimentology, 55(1), 179-200. https://doi.org/10.1111/j.1365-3091.2007.00897.x
  37. Hustoft, S., Bünz, S., Mienert, J., & Chand, S. (2009). Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard. Earth and Planetary Science Letters, 284(1), 12-24. https://doi.org/10.1016/j.epsl.2009.03.038
  38. Ingólfsson, Ó., & Landvik, J. Y. (2013). The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives. Quaternary Science Reviews, 64, 33-60. https://doi.org/10.1016/j.quascirev.2012.11.034
  39. Ingvaldsen, R., & Loeng, H. (2009). Physical oceanography Ecosystem Barents Sea. Trondheim, Norway.
  40. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp
  41. Ivanov, A. V. (1956). On the Systematic Position of Pogonophora. Systematic Zoology, 5(4), 165-173. https://doi.org/10.2307/2411918
  42. Jones, D. S. (1983). Sclerochronology: Reading the Record of the Molluscan Shell: Annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity. American Scientist, 71(4), 384-391.
  43. Joye, S. B., Bowles, M. W., Samarkin, V. A., Hunter, K. S., & Niemann, H. (2010). Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. Deep Sea Research Part II: Topical Studies in Oceanography, 57(21), 1990-2001. https://doi.org/10.1016/j.dsr2.2010.06.001
  44. Judd, A., & Hovland, M. (2007). The impact on geology, biology and marine environment. Cambridge University Press: Cambridge, UK.
  45. Kandilarov, A., Landa, H., Mjelde, R., Pedersen, R. B., Okino, K., & Murai, Y. (2010). Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed ridge segment center. Marine Geophysical Researches, 31(3), 173-195. https://doi.org/10.1007/s11001-010-9095-8
  46. Knies, J., Damm, E., Gutt, J., Mann, U., & Pinturier, L. (2004). Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages. Geochemistry, Geophysics, Geosystems, 5(6). https://doi.org/10.1029/2003GC000687
  47. Kvenvolden, K. A. (1998). A primer on the geological occurrence of gas hydrate. Geological Society, London, Special Publications, 137(1), 9-30. https://doi.org/10.1144/GSL.SP.1998.137.01.02
  48. Landvik, J. Y., Ingólfsson, Ó., Mienert, J., Lehman, S. J., Solheim, A., Elverhøi, A., & Ottesen, D. (2005). Rethinking Late Weichselian ice-sheet dynamics in coastal NW Svalbard. Boreas, 34(1), 7-24. https://doi.org/10.1111/j.1502-3885.2005.tb01001.x
  49. Long, D., Lammers, S., & Linke, P. (1998). Possible hydrate mounds within large sea-floor craters in the Barents Sea. Geological Society, London, Special Publications, 137(1), 223-237. https://doi.org/10.1144/GSL.SP.1998.137.01.18
  50. Lösekann, T., Knittel, K., Nadalig, T., Fuchs, B., Niemann, H., Boetius, A., & Amann, R. (2007). Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Applied and Environmental Microbiology, 73(10), 3348-3362. https://doi.org/10.1128/AEM.00016-07
  51. Lundin, E., & Doré, A. G. (2002). Mid-Cenozoic post-breakup deformation in the 'passive' margins bordering the Norwegian-Greenland Sea. Marine and Petroleum Geology, 19(1), 79-93. https://doi.org/10.1016/S0264-8172(01)00046-0
  52. Masetti, G., & Calder, B. (2012). Remote identification of a shipwreck site from MBES backscatter. Journal of Environmental Management, 111, 44-52. https://doi.org/10.1016/j.jenvman.2012.06.037
  53. Maslin, M., Owen, M., Betts, R. A., Day, S., Jones, T. D., & Ridgwell, A. (2013). Assessing the Past and Future Stability of Global Gas Hydrate Reservoirs. In Climate Forcing of Geological Hazards (pp. 250-277). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118482698.ch11
  54. McMillen, K. J., Warme, J. E., & Hemmen, E. H. (1977). An electro-osmotic knife for slicing large box cores. Journal of Sedimentary Research, 47(2), 864–867. https://doi.org/10.1306/212F727F-2B24-11D7-8648000102C1865D
  55. Milner, A. (2007). Arctic climate impact assessment Arctic climate impact assessment. Cambridge University Press, New York, 2005. ISBN 0521865093. International Journal of Climatology, 27(3), 413–414. https://doi.org/10.1002/joc.1445
  56. Niemann, H., Lösekann, T., De Beer, D., Elvert, M., Nadalig, T., Knittel, K., ... & Boetius, A. (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443(7113), 854-858. https://doi.org/10.1038/nature05227
  57. Nikolovska, A., Sahling, H., & Bohrmann, G. (2008). Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochemistry, Geophysics, Geosystems, 9(10). https://doi.org/10.1029/2008GC002118
  58. Nilsen, F., Cottier, F., Skogseth, R., & Mattsson, S. (2008). Fjord-shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard. Continental Shelf Research, 28(14), 1838-1853. https://doi.org/10.1016/j.csr.2008.04.015
  59. Nilsson, H. C., & Rosenberg, R. (2000). Succession in marine benthic habitats and fauna in response to oxygen deficiency: Analysed by sediment profile-imaging and by grab samples. Marine Ecology Progress Series, 197, 139-149. https://doi.org/10.3354/meps197139
  60. Pecher, I. A., Kukowski, N., Huebscher, C., Greinert, J., & Bialas, J. (2001). The link between bottom-simulating reflections and methane flux into the gas hydrate stability zone - new evidence from Lima Basin, Peru Margin. Earth and Planetary Science Letters, 185(3), 343-354. https://doi.org/10.1016/S0012-821X(00)00376-9
  61. Penrose, J. D., Siwabessy, P. J. W., Gavrilov, A., Parnum, I., Hamilton, L. J., Bickers, A., ... & Kennedy, P. (2005). Acoustic techniques for seabed classification. Cooperative Research Centre for Coastal Zone Estuary and Waterway Management, Technical Report, 32, 11.
  62. Pleijel, F., Dahlgren, T. G., & Rouse, G. W. (2009). Progress in systematics: From Siboglinidae to Pogonophora and Vestimentifera and back to Siboglinidae. Comptes Rendus Biologies, 332(2), 140-148. https://doi.org/10.1016/j.crvi.2008.10.007
  63. Rasmussen, T. L., Thomsen, E., Ślubowska, M. A., Jessen, S., Solheim, A., & Koç, N. (2007). Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quaternary Research, 67(1), 100-114. https://doi.org/10.1016/j.yqres.2006.07.002
  64. Rouse, G. W. (2001). A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): Formerly the phyla Pogonophora and Vestimentifera. Zoological Journal of the Linnean Society, 132(1), 55-80. https://doi.org/10.1111/j.1096-3642.2001.tb02271.x
  65. Sahling, H., Bohrmann, G., Spiess, V., Bialas, J., Breitzke, M., Ivanov, M., Kasten, S., Krastel, S., & Schneider, R. (2008). Pockmarks in the Northern Congo Fan area, SW Africa: Complex seafloor features shaped by fluid flow. Marine Geology, 249(3), 206-225. https://doi.org/10.1016/j.margeo.2007.11.010
  66. Sahling, H., Römer, M., Pape, T., Bergès, B., dos Santos Fereirra, C., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N., Dimmler, W., Schroedter, L., Glockzin, M., & Bohrmann, G. (2014). Gas emissions at the continental margin west of Svalbard: Mapping, sampling, and quantification. Biogeosciences, 11(21), 6029-6046. https://doi.org/10.5194/bg-11-6029-2014
  67. Seager, R., Battisti, D. S., Yin, J., Gordon, N., Naik, N., Clement, A. C., & Cane, M. A. (2002). Is the Gulf Stream responsible for Europe's mild winters? Quarterly Journal of the Royal Meteorological Society, 128(586), 2563-2586. https://doi.org/10.1256/qj.01.128
  68. Smith, A. J., Mienert, J., Bünz, S., Greinert, J., & Rasmussen, T. L. (2013). 900-m high gas plumes rising from marine sediments containing structure II hydrates at Vestnesa Ridge, offshore W-Svalbard. EGU2013-9302.
  69. Sommer, S., Linke, P., Pfannkuche, O., Schleicher, T., Deimling, J. S. v, Reitz, A., Haeckel, M., Flögel, S., & Hensen, C. (2009). Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Marine Ecology Progress Series, 382, 69-86. https://doi.org/10.3354/meps07956
  70. Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., ... & Wiencke, C. (2002). The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar research, 21(1), 133-166. https://doi.org/10.3402/polar.v21i1.6479
  71. Søreide, J. E., Carroll, M. L., Hop, H., Ambrose, W. G., Hegseth, E. N., & Falk-Petersen, S. (2013). Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Marine Biology Research, 9(9), 831-850. https://doi.org/10.1080/17451000.2013.775457
  72. Søreide, J. E., Hop, H., Carroll, M. L., Falk-Petersen, S., & Hegseth, E. N. (2006). Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanography, 71(1), 59-87. https://doi.org/10.1016/j.pocean.2006.06.001
  73. Tamelander, T., Renaud, P. E., Hop, H., Carroll, M. L., Jr, W. G. A., & Hobson, K. A. (2006). Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Marine Ecology Progress Series, 310, 33-46. https://doi.org/10.3354/meps310033
  74. Taylor, J. D., & Glover, E. A. (2010). Chemosymbiotic Bivalves. In S. Kiel (Ed.), The Vent and Seep Biota: Aspects from Microbes to Ecosystems (pp. 107-135). Springer Netherlands. https://doi.org/10.1007/978-90-481-9572-5_5
  75. Thiede, J., Myhre, A. M., Firth, J. V., Johnson, G. L., Ruddiman, W. F., & (Eds.) (Eds.). (1996). Proceedings of the Ocean Drilling Program, 151 Scientific Results (Vol. 151). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.151.1996
  76. Thurber, A. R., Kröger, K., Neira, C., Wiklund, H., & Levin, L. A. (2010). Stable isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology, 272(1), 260-269. https://doi.org/10.1016/j.margeo.2009.06.001
  77. Tynan, C. T., & DeMaster, D. P. (1997). Observations and Predictions of Arctic Climatic Change: Potential Effects on Marine Mammals. Arctic, 50(4), 308-322. https://doi.org/10.14430/arctic1113
  78. Vanneste, M., Guidard, S., & Mienert, J. (2005). Bottom-simulating reflections and geothermal gradients across the western Svalbard margin. Terra Nova, 17(6), 510-516. https://doi.org/10.1111/j.1365-3121.2005.00643.x
  79. Vanreusel, A., Andersen, A. C., Boetius, A., Connelly, D., Cunha, M. R., Decker, C., Hilario, A., Kormas, K. A., Maignien, L., Olu, K., Pachiadaki, M., Ritt, B., Rodrigues, C., Sarrazin, J., Tyler, P., Van Gaever, S., & Vanneste, H. (2009). Biodiversity of Cold Seep Ecosystems Along the European Margins. Oceanography, 22(1), 110-127. https://doi.org/10.5670/oceanog.2009.12
  80. Vogt, P. R., Crane, K., Sundvor, E., Max, M. D., & Pfirman, S. L. (1994). Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait. Geology, 22(3), 255-258. https://doi.org/10.1130/0091-7613(1994)022%3C0255:MGPOYT%3E2.3.CO;2
  81. Weber, T. C., Mayer, L., Jerram, K., Beaudoin, J., Rzhanov, Y., & Lovalvo, D. (2014). Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico. Geochemistry, Geophysics, Geosystems, 15(5), 1911-1925. https://doi.org/10.1002/2014GC005271
  82. Westbrook, G. K., Chand, S., Rossi, G., Long, C., Bünz, S., Camerlenghi, A., Carcione, J. M., Dean, S., Foucher, J.-P., Flueh, E., Gei, D., Haacke, R. R., Madrussani, G., Mienert, J., Minshull, T. A., Nouzé, H., Peacock, S., Reston, T. J., Vanneste, M., & Zillmer, M. (2008). Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. Marine and Petroleum Geology, 25(8), 744-758. https://doi.org/10.1016/j.marpetgeo.2008.02.003
  83. Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M., Pälike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A., Lanoisellé, M., James, R. H., Hühnerbach, V., Green, D., Fisher, R. E., Crocker, A. J., Chabert, A., Bolton, C., Beszczynska-Möller, A., Berndt, C., & Aquilina, A. (2009). Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters, 36(15). https://doi.org/10.1029/2009GL039191
  84. Whiticar, M. J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1), 291-314. https://doi.org/10.1016/S0009-2541(99)00092-3
  85. Yielding, G., Freeman, B., & Needham, and D. T. (1997). Quantitative Fault Seal Prediction. AAPG Bulletin, 81(6), 897-917.
  86. Zapata-Hernández, G., Sellanes, J., Thurber, A. R., Levin, L. A., Chazalon, F., & Linke, P. (2014). New insights on the trophic ecology of bathyal communities from the methane seep area off Concepción, Chile ( 36° S). Marine Ecology, 35(1), 1-21. https://doi.org/10.1111/maec.12051