Skip to main navigation menu Skip to main content Skip to site footer

Cruise Reports

Vol. 3 (2015)

CAGE15-2 Cruise Report: Gas hydrate deposits and methane seepages offshore western Svalbard and Storfjordrenna: Biogeochemical and biological investigations

  • Giuliana Panieri
  • William Ambrose
  • Emmelie Åström
  • Michael L. Carroll
  • Daniel Fornari
  • Sophie J. George
  • Carolyn Graves
  • Friederike Gründger
  • Wei-L. Hong
  • Gregory J. Kurras
  • Andrea Schneider
  • Giacomo Osti
  • Pavel Serov
  • Anna Silyakova
  • Mette M. Svenning
  • Marta Torres
DOI
https://doi.org/10.7557/cage.6932
Submitted
22 January 2023
Published
27-01-2023

Abstract

The main goal of CAGE 15-­2 cruise was to study the gas hydrate system and methane emissions off western Svalbard and in Storfjordrenna. We addressed this through a comprehensive scientific program comprising dives with the MISO-­‐Tow Cam adapted to the multicorer frame from UiT-­‐NPI (TowCam/Multicorer, TCM), methane measurements in sediments and water column, sediment coring (multicorer + gravitycorer), water column and sediment biogeochemistry, microbiology, micropaleontology, macrobiology, and bathymetric mapping.

In addition, during the ecosounder and TCM surveys we collected data for selecting the locations for the CAGE  observatories to be deployed during the cruise.

The areas investigated were:

W Prins Karls Forland (two sites at ca 90 m and 240 m water depth),
An area located at the coordinate 78N 08E called “site 7808” (ca 90 m water depth; marker CAGE 882),
Vestnesa Ridge (ca 1200 m water depth; markers CAGE 888 and 895),
Storfjordrenna (two sites at ca 350, benthic station SR1, and 390 m water  depth, Pingos site; marker CAGE 933),
Craters area (ca 350 m water depth).

We planned the following activities during the CAGE 15-­2 cruise:

EM 300 Simrad swath bathymetry mapping to identify seabed morphology
Mapping of flare distributions
CTD stations at different water depths and in different areas for measurements of
ocean water masses characteristics,  and
water sampling for water/gas chemistry and microbiology investigations across methane seeps.
TCM surveys (video-­‐camera) to image seabed fluid flow expressions, sites of bacteria mats and gas bubbles. These results were used to define sampling stations and collect data for the future deployment of CAGE  observatories (cruise CAGE15-­‐3)
Repeated deployments with TCM to sample surficial and shallow sediments with respect to microbiology, geochemistry, biogeochemistry, and micropalentology.
Gravity corer for studying sediment biogeochemistry, biomarkers, microbiology, and foraminifera.
Van Veen grabs sampling for studying macrofauna.
Scrape sampling to collect fauna communities and possible carbonate blocks.

The cruise may be known as: CAGE15_2

References

  1. Aagaard, K., Foldvik, A., & Hillman, S. R. (1987). The West Spitsbergen Current: Disposition and water mass transformation. Journal of Geophysical Research: Oceans, 92(C4), 3778–3784. https://doi.org/10.1029/JC092iC04p03778
  2. Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H., Bertics, V. J., Dumke, I., Dünnbier, K., Ferré, B., Graves, C., Gross, F., Hissmann, K., Hühnerbach, V., Krause, S., Lieser, K., Schauer, J., & Steinle, L. (2014). Temporal Constraints on Hydrate-Controlled Methane Seepage off Svalbard. Science, 343(6168), 284–287. https://doi.org/10.1126/science.1246298
  3. Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C., & Mienert, J. (2012). Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. Marine Geology, 332–334, 189–197. https://doi.org/10.1016/j.margeo.2012.09.012
  4. Chabert, A., Minshull, T. A., Westbrook, G. K., Berndt, C., Thatcher, K. E., & Sarkar, S. (2011). Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data. Journal of Geophysical Research: Solid Earth, 116(B12). https://doi.org/10.1029/2011JB008211
  5. Crane, K., Sundvor, E., Buck, R., & Martinez, F. (1991). Rifting in the northern Norwegian-Greenland Sea: Thermal tests of asymmetric spreading. Journal of Geophysical Research: Solid Earth, 96(B9), 14529–14550. https://doi.org/10.1029/91JB01231
  6. Damm, E., Mackensen, A., Budéus, G., Faber, E., & Hanfland, C. (2005). Pathways of methane in seawater: Plume spreading in an Arctic shelf environment (SW-Spitsbergen). Continental Shelf Research, 25(12), 1453–1472. https://doi.org/10.1016/j.csr.2005.03.003
  7. Engen, Ø., Faleide, J. I., & Dyreng, T. K. (2008). Opening of the Fram Strait gateway: A review of plate tectonic constraints. Tectonophysics, 450(1), 51–69. https://doi.org/10.1016/j.tecto.2008.01.002
  8. Ferré, B., Mienert, J., & Feseker, T. (2012). Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. Journal of Geophysical Research: Oceans, 117(C10). https://doi.org/10.1029/2012JC008300
  9. Gentz, T., Damm, E., Schneider von Deimling, J., Mau, S., McGinnis, D. F., & Schlüter, M. (2014). A water column study of methane around gas flares located at the West Spitsbergen continental margin. Continental Shelf Research, 72, 107–118. https://doi.org/10.1016/j.csr.2013.07.013
  10. Hinrichs, K.-U., Summons, R. E., Orphan, V., Sylva, S. P., & Hayes, J. M. (2000). Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Organic Geochemistry, 31(12), 1685–1701. https://doi.org/10.1016/S0146-6380(00)00106-6
  11. Howe, J. A., Shimmield, T. M., Harland, R., & Eyles, N. (2008). Late Quaternary contourites and glaciomarine sedimentation in the Fram Strait. Sedimentology, 55(1), 179–200. https://doi.org/10.1111/j.1365-3091.2007.00897.
  12. Hustoft, S., Bünz, S., Mienert, J., & Chand, S. (2009). Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard. Earth and Planetary Science Letters, 284(1), 12–24. https://doi.org/10.1016/j.epsl.2009.03.038
  13. Judd, A., & Hovland, M. (2007). Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge University Press. https://doi.org/10.1017/CBO9780511535918
  14. Knies, J., Damm, E., Gutt, J., Mann, U., & Pinturier, L. (2004). Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: Evidences for past seepages. Geochemistry, Geophysics, Geosystems, 5(6). https://doi.org/10.1029/2003GC000687
  15. Lammers, S., Suess, E., & Hovland, M. (1995). A large methane plume east of Bear Island (Barents Sea): Implications for the marine methane cycle. Geologische Rundschau, 84(1), 59–66. https://doi.org/10.1007/BF00192242
  16. Landvik, J. Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J., Salvigsen, O., Siegert, M. J., Svendsen, J.-I., & Vorren, T. O. (1998). The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quaternary Science Reviews, 17(1), 43–75. https://doi.org/10.1016/S0277-3791(97)00066-8
  17. Liu, X., & Flemings, P. B. (2007). Dynamic multiphase flow model of hydrate formation in marine sediments. Journal of Geophysical Research: Solid Earth, 112(B3). https://doi.org/10.1029/2005JB004227
  18. Mienert, J., & Posewang, J. (1999). Evidence of shallow- and deep-water gas hydrate destabilizations in North Atlantic polar continental margin sediments. Geo-Marine Letters, 19(1), 143–149. https://doi.org/10.1007/s003670050101
  19. Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens, G. R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R. W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T. C., Onodera, J., … Kristoffersen, Y. (2006). The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441(7093), Article 7093. https://doi.org/10.1038/nature04800
  20. Niemann, H., & Elvert, M. (2008). Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Organic Geochemistry, 39(12), 1668–1677. https://doi.org/10.1016/j.orggeochem.2007.11.003
  21. Panieri, G., James, R. H., Camerlenghi, A., Westbrook, G. K., Consolaro, C., Cacho, I., Cesari, V., & Cervera, C. S. (2014). Record of methane emissions from the West Svalbard continental margin during the last 23.500yrs revealed by δ13C of benthic foraminifera. Global and Planetary Change, 122, 151–160. https://doi.org/10.1016/j.gloplacha.2014.08.014
  22. Paull, C. K., Ussler III, W., Dallimore, S. R., Blasco, S. M., Lorenson, T. D., Melling, H., Medioli, B. E., Nixon, F. M., & McLaughlin, F. A. (2007). Origin of pingo-like features on the Beaufort Sea shelf and their possible relationship to decomposing methane gas hydrates. Geophysical Research Letters, 34(1). https://doi.org/10.1029/2006GL027977
  23. Petersen, C. J., Bünz, S., Hustoft, S., Mienert, J., & Klaeschen, D. (2010). High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift. Marine and Petroleum Geology, 27(9), 1981–1994. https://doi.org/10.1016/j.marpetgeo.2010.06.006
  24. Ritzmann, O., Jokat, W., Czuba, W., Guterch, A., Mjelde, R., & Nishimura, Y. (2004). A deep seismic transect from Hovgård Ridge to northwestern Svalbard across the continental-ocean transition: A sheared margin study. Geophysical Journal International, 157(2), 683–702. https://doi.org/10.1111/j.1365-246X.2004.02204.x
  25. Sahling, H., Römer, M., Pape, T., Bergès, B., dos Santos Fereirra, C., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N., Dimmler, W., Schroedter, L., Glockzin, M., & Bohrmann, G. (2014). Gas emissions at the continental margin west of Svalbard: Mapping, sampling, and quantification. Biogeosciences, 11(21), 6029–6046. https://doi.org/10.5194/bg-11-6029-2014
  26. Saloranta, T. M., & Svendsen, H. (2001). Across the Arctic front west of Spitsbergen: High-resolution CTD sections from 1998–2000. Polar Research, 20(2), 177–184. https://doi.org/10.3402/polar.v20i2.6515
  27. Sarkar, S., Berndt, C., Minshull, T. A., Westbrook, G. K., Klaeschen, D., Masson, D. G., Chabert, A., & Thatcher, K. E. (2012). Seismic evidence for shallow gas-escape features associated with a retreating gas hydrate zone offshore west Svalbard. Journal of Geophysical Research: Solid Earth, 117(B9). https://doi.org/10.1029/2011JB009126
  28. Smith, A. J., Mienert, J., Bünz, S., Greinert, J., & Rasmussen, T. L. (2013). 900-m high gas plumes rising from marine sediments containing structure II hydrates at Vestnesa Ridge, offshore W-Svalbard. EGU2013-9302.
  29. Solheim, A., & Elverhøi, A. (1985). A pockmark field in the central Barents Sea; gas from a petrogenic source? Polar Research, 3(1), 11–19. https://doi.org/10.3402/polar.v3i1.6937
  30. Solheim, A., & Elverhøi, A. (1993). Gas-related sea floor craters in the Barents Sea. Geo-Marine Letters, 13(4), 235–243. https://doi.org/10.1007/BF01207753
  31. Solheim, A., Faleide, J. I., Andersen, E. S., Elverhøi, A., Forsberg, C. F., Vanneste, K., Uenzelmann-neben, G., & Channell, J. E. T. (1998). Late Cenozoic seismic stratigraphy and glacial geological development of the east Greenland and Svalbard-­‐Barents Sea continental margins. Quaternary Science Reviews, 17(1), 155–184. https://doi.org/10.1016/S0277-3791(97)00068-1
  32. Solheim, A., Milliman, J. D., & Elverhøi, A. (1988). Sediment distribution and sea-floor morphology of Storbanken: Implications for the glacial history of the northern Barents Sea. Canadian Journal of Earth Sciences, 25(4), 547–556. https://doi.org/10.1139/e88-053
  33. Spielhagen, R. F., Werner, K., Sørensen, S. A., Zamelczyk, K., Kandiano, E., Budeus, G., Husum, K., Marchitto, T. M., & Hald, M. (2011). Enhanced Modern Heat Transfer to the Arctic by Warm Atlantic Water. Science, 331(6016), 450–453. https://doi.org/10.1126/science.1197397
  34. Suess, E., Altenbach, A.V. (1992). Europaisches Nordmeer, Reise Nr. 17, 15. Juli-‐29. August 1991. Meteor-¬‐Ber Univ Hamburg No 92–3:1–164.
  35. Swift, J. H. (1986). The Arctic Waters. In B. G. Hurdle (Ed.), The Nordic Seas (pp. 129–154). Springer. https://doi.org/10.1007/978-1-4615-8035-5_5
  36. Vanneste, M., Harbitz, C. B., Blasio, F. V. D., Glimsdal, S., Mienert, J., & Elverhøi, A. (2011). Hinlopen–Yermak Landslide, Arctic Ocean—Geomorphology, Landslide Dynamics, and Tsunami Simulations. In R. C. Shipp, P. Weimer, & H. W. Posamentier (Eds.), Mass-Transport Deposits in Deepwater Settings (Vol. 96, p. 0). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/sepmsp.096.509
  37. Vorren, T. O., Laberg, J. S., Blaume, F., Dowdeswell, J. A., Kenyon, N. H., Mienert, J., Rumohr, J., & Werner, F. (1998). The Norwegian-¬‐Greenland Sea continental margins: morphology and late Quaternary sedimentary processes and environment. Quaternary Science Reviews, 17(1), 273–302. https://doi.org/10.1016/S0277-3791(97)00072-3
  38. Wegener, G., Niemann, H., Elvert, M., Hinrichs, K.-U., & Boetius, A. (2008). Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Environmental Microbiology, 10(9), 2287–2298. https://doi.org/10.1111/j.1462-2920.2008.01653.x
  39. Westbrook, G. K., Chand, S., Rossi, G., Long, C., Bünz, S., Camerlenghi, A., Carcione, J. M., Dean, S., Foucher, J.-P., Flueh, E., Gei, D., Haacke, R. R., Madrussani, G., Mienert, J., Minshull, T. A., Nouzé, H., Peacock, S., Reston, T. J., Vanneste, M., & Zillmer, M. (2008). Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. Marine and Petroleum Geology, 25(8), 744–758. https://doi.org/10.1016/j.marpetgeo.2008.02.003
  40. Wright, I. C., & et al. (2012). RRS James Clark Ross Cruise 253, 26 Jul -25 Aug 2011. Arctic methane hydrates [Monograph]. National Oceanography Centre Southampton. https://eprints.soton.ac.uk/339241/