Using movement behaviour to define biological seasons for woodland caribou
DOI:
https://doi.org/10.7557/2.32.2.2277Keywords:
biological inference, quantitative methods, seasonal onset behaviour, temporal variation, woodland caribouAbstract
Terrestrial mammals are strongly influenced by seasonal changes in environmental conditions. Studies of animal space use behaviour are therefore inherently seasonal in nature. We propose an individual-based quantitative method for identifying seasonal shifts in caribou movement behaviour and we demonstrate its use in determining the onset of the winter, spring dispersal, and calving seasons. Using pooled data for the population we demonstrate an alternate approach using polynomial regression with mixed effects. We then compare individual onset dates with population-based estimates and those adopted by expert consensus for our study area. Distributions of individual-based onset dates were normally distributed with prominent modes; however, there was considerable variation in individual onset times. Population-based estimates were closer to the peaks of individual estimates than were expert-based estimates, which fell outside the onetailed 90% and 95% sample quantiles of individually-fitted distributions for spring and winter, respectively. Both expertand population-based estimates were later for winter and earlier for both spring and calving than were individual-based estimates. We discuss the potential consequences of neglecting to corroborate conventionally used dates with observed seasonal trends in movement behaviour. In closing, we recommend researchers adopt an individual-based quantitative approach and a variable temporal window for data set extraction.Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant Rangifer irrevocable and non-exclusive right of publication with the work simultaneously licensed under a Creative Commons Attribution License (CC-BY). This means, among other things, that anyone is free to copy and distribute the content, as long as they give proper credit to the author(s) and the journal. For further information, see Creative Commons website for human readable or lawyer readable versions.