Skip to main navigation menu Skip to main content Skip to site footer

Cruise Reports

Vol. 1 (2013)

CAGE13-5 Cruise Report: Investigation of glacial geomorphology in the Storfjordrenna.

  • Karin Andreassen
DOI
https://doi.org/10.7557/cage.6845
Submitted
28 November 2022
Published
16-01-2023

Abstract

The course GEO‐8144/3144 Marine geology and geophysics cruise, taught at the University of Tromsø, is part of the obligatory courses to be completed by PhD students affiliated with the AMGG research school and yields 5 credits (ECTS). Participants include scientific staff and students.

This cruise was conducted within the framework of

  1. the Norwegian Science Council (NFR) project Glaciations in the Barents Sea area (GlaciBar) and
  2. the trainee school in Arctic Marine Geology and Geophysics (AMGG) financed by the University of Tromsø. The cruise was funded by AMGG.

The main target areas are the Storfjordbanken and Storfjordrenna south of Svalbard. The cruise addressed marine glacigenic processes of the areas, with a focus on the last glacial-interglacial cycle in order to reconstruct in a more detail way the retreat of the Barents Sea–Svalbard Ice Sheet.

To collect data have been used different methods and instruments, which will be described in a more detailed way in chapter 3. Below here there is only an overview:

  • Multibeam echo sounder: Sound-wave beams are transmitted in a fan perpendicular to the ship track from a hull-mounted echo sounder. Produces high-resolution seafloor bathymetry.
  • Chirp: High-resolution acoustic profiling.
  • CTD (Conductivity, Temperature, Depth): Sensors installed in a frame measure CTD properties of the water column. Generally used for oceanographic studies, but here mainly to calibrate the multibeam data from calculated velocities.
  • 2D seismic: GI airguns and hydrophone cable (streamer).
  • Sediment coring: Gravity coring.
  • Gas sample collection.

The targeted study area is under-explored compared to similar areas (Bjørnøyrenna) in the SW Barents Sea. The study areas in the Storfjordrenna and Stordfjorbanken are shown. Several different features have been identified on the seafloor, like MSGLs, grounding zone wedges, flares, pockmarks and ploughmarks. All these features will be described in detail in chapter 4.

In addition, 9 gravity cores were acquired in areas likely to provide information on the timing of the formation of the sediment accumulation. The specific core locations were chosen based on information from multibeam swath bathymetry and chirp data. Furthermore, gas samples were collected from the cores from pockmarks and will be analyzed later.

The new results add new detailed data regarding the deglaciation of the Storfjorden trough. Glacial geomorphologic features similar to the ones in Bjørnøyrenna were discovered. The observation of gas flares were the first such discovery in the northern Barents Sea. The discovery of flares and pockmarks might have a big impact on future petroleum exploration activities in the region.

The cruise may be known as: HH_2013_GEO_8144_3144

References

  1. Aagaard-Sørensen, S., Husum, K., Hald, M., & Knies, J. (2010). Paleoceanographic development in the SW Barents Sea during the Late Weichselian–Early Holocene transition. Quaternary Science Reviews, 29(25), 3442–3456. https://doi.org/10.1016/j.quascirev.2010.08.014
  2. Andreassen, K., Laberg, J. S., & Vorren, T. O. (2008). Seafloor geomorphology of the SW Barents Sea and its glaci-dynamic implications. Geomorphology, 97(1), 157–177. https://doi.org/10.1016/j.geomorph.2007.02.050
  3. Andreassen, K., & Winsborrow, M. (2009). Signature of ice streaming in Bjørnøyrenna, Polar North Atlantic, through the Pleistocene and implications for ice-stream dynamics. Annals of Glaciology, 50(52), 17–26. https://doi.org/10.3189/172756409789624238
  4. Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C., & Mienert, J. (2012). Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. Marine Geology, 332–334, 189–197. https://doi.org/10.1016/j.margeo.2012.09.012
  5. Butt, F. A., Drange, H., Elverhøi, A., Otterå, O. H., & Solheim, A. (2002). Modelling Late Cenozoic isostatic elevation changes in the Barents Sea and their implications for oceanic and climatic regimes: Preliminary results. Quaternary Science Reviews, 21(14), 1643–1660. https://doi.org/10.1016/S0277-3791(02)00018-5
  6. Chand, S., Rise, L., Ottesen, D., Dolan, M. F. J., Bellec, V., & Bøe, R. (2009). Pockmark-like depressions near the Goliat hydrocarbon field, Barents Sea: Morphology and genesis. Marine and Petroleum Geology, 26(7), 1035–1042. https://doi.org/10.1016/j.marpetgeo.2008.09.002
  7. Chand, S., Thorsnes, T., Rise, L., Brunstad, H., Stoddart, D., Bøe, R., Lågstad, P., & Svolsbru, T. (2012). Multiple episodes of fluid flow in the SW Barents Sea (Loppa High) evidenced by gas flares, pockmarks and gas hydrate accumulation. Earth and Planetary Science Letters, 331–332, 305–314. https://doi.org/10.1016/j.epsl.2012.03.021
  8. Dowdeswell, J. A., Evans, J., & Ó Cofaigh, C. (2010). Submarine landforms and shallow acoustic stratigraphy of a 400 km-long fjord-shelf-slope transect, Kangerlussuaq margin, East Greenland. Quaternary Science Reviews, 29(25), 3359–3369. https://doi.org/10.1016/j.quascirev.2010.06.006
  9. Dowdeswell, J. A., Hogan, K. A., Evans, J., Noormets, R., Ó Cofaigh, C., & Ottesen, D. (2010). Past ice-sheet flow east of Svalbard inferred from streamlined subglacial landforms. Geology, 38(2), 163–166. https://doi.org/10.1130/G30621.1
  10. Dowdeswell, J. A., Ottesen, D., Evans, J., Cofaigh, C. Ó., & Anderson, J. B. (2008). Submarine glacial landforms and rates of ice-stream collapse. Geology, 36(10), 819–822. https://doi.org/10.1130/G24808A.1
  11. FALEIDE, J. I., VÅGNES, E., & GUDLAUGSSON, S. T. (1993). Late Mesozoic–Cenozoic evolution of the southwestern Barents Sea. Geological Society, London, Petroleum Geology Conference Series, 4(1), 933–950. https://doi.org/10.1144/0040933
  12. Foucher, J. P., Westbrook, G., Boetius, A., Ceramicola, S., Dupré, S., Mascle, J., Mienert, J., Pfannkuche, O., Pierre, C., & Praeg, D. (2009). Structure and Drivers of Cold Seep Ecosystems. Oceanography, 22(1), 92–109. https://doi.org/10.5670/oceanog.2009.11
  13. Graham, A. G. C., Dutrieux, P., Vaughan, D. G., Nitsche, F. O., Gyllencreutz, R., Greenwood, S. L., Larter, R. D., & Jenkins, A. (2013). Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey: Origin and implications for the history of Pine Island Glacier. Journal of Geophysical Research: Earth Surface, 118(3), 1356–1366. https://doi.org/10.1002/jgrf.20087
  14. Greenwood, S. L., Clark, C. D., & Hughes, A. L. C. (2007). Formalising an inversion methodology for reconstructing ice-sheet retreat patterns from meltwater channels: Application to the British Ice Sheet. Journal of Quaternary Science, 22(6), 637–645. https://doi.org/10.1002/jqs.1083
  15. Greinert, J., Artemov, Y., Egorov, V., De Batist, M., & McGinnis, D. (2006). 1300-m-high rising bubbles from mud volcanoes at 2080m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 244(1), 1–15. https://doi.org/10.1016/j.epsl.2006.02.011
  16. Henriksen, E., Bjørnseth, H. M., Hals, T. K., Heide, T., Kiryukhina, T., Kløvjan, O. S., Larssen, G. B., Ryseth, A. E., Rønning, K., Sollid, K., & Stoupakova, A. (2011). Chapter 17 Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281. https://doi.org/10.1144/M35.17
  17. Ingólfsson, Ó., & Landvik, J. Y. (2013). The Svalbard–Barents Sea ice-sheet – Historical, current and future perspectives. Quaternary Science Reviews, 64, 33–60. https://doi.org/10.1016/j.quascirev.2012.11.034
  18. Jakobsson, M., Anderson, J. B., Nitsche, F. O., Dowdeswell, J. A., Gyllencreutz, R., Kirchner, N., Mohammad, R., O’Regan, M., Alley, R. B., Anandakrishnan, S., Eriksson, B., Kirshner, A., Fernandez, R., Stolldorf, T., Minzoni, R., & Majewski, W. (2011). Geological record of ice shelf break-up and grounding line retreat, Pine Island Bay, West Antarctica. Geology, 39(7), 691–694. https://doi.org/10.1130/G32153.1
  19. Jakobsson, M., Anderson, J. B., Nitsche, F. O., Gyllencreutz, R., Kirshner, A. E., Kirchner, N., O’Regan, M., Mohammad, R., & Eriksson, B. (2012). Ice sheet retreat dynamics inferred from glacial morphology of the central Pine Island Bay Trough, West Antarctica. Quaternary Science Reviews, 38, 1–10. https://doi.org/10.1016/j.quascirev.2011.12.017
  20. Jessen, S. P., Rasmussen, T. L., Nielsen, T., & Solheim, A. (2010). A new Late Weichselian and Holocene marine chronology for the western Svalbard slope 30,000–0 cal years BP. Quaternary Science Reviews, 29(9), 1301–1312. https://doi.org/10.1016/j.quascirev.2010.02.020
  21. Judd, A., & Hovland, M. (2007). Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge University Press. https://doi.org/10.1017/CBO9780511535918
  22. KING, L. H., & MacLEAN, B. (1970). Pockmarks on the Scotian Shelf. GSA Bulletin, 81(10), 3141–3148. https://doi.org/10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2
  23. Knies, J., Matthiessen, J., Vogt, C., Laberg, J. S., Hjelstuen, B. O., Smelror, M., Larsen, E., Andreassen, K., Eidvin, T., & Vorren, T. O. (2009). The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: A new model based on revised chronostratigraphy. Quaternary Science Reviews, 28(9), 812–829. https://doi.org/10.1016/j.quascirev.2008.12.002
  24. Knies, J., Nowaczyk, N., Müller, C., Vogt, C., & Stein, R. (2000). A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150 000 years. Marine Geology, 163(1), 317–344. https://doi.org/10.1016/S0025-3227(99)00106-1
  25. Kristensen, D. K., Rasmussen, T. L., & Koç, N. (2013). Palaeoceanographic changes in the northern Barents Sea during the last 16 000 years – new constraints on the last deglaciation of the Svalbard–Barents Sea Ice Sheet. Boreas, 42(3), 798–813. https://doi.org/10.1111/j.1502-3885.2012.00307.x
  26. Laberg, J. S., & Vorren, T. O. (1995). Late Weichselian submarine debris flow deposits on the Bear Island Trough Mouth Fan. Marine Geology, 127(1), 45–72. https://doi.org/10.1016/0025-3227(95)00055-4
  27. Lammers, S., Suess, E., & Hovland, M. (1995). A large methane plume east of Bear Island (Barents Sea): Implications for the marine methane cycle. Geologische Rundschau, 84(1), 59–66. https://doi.org/10.1007/BF00192242
  28. Landvik, J. Y., Bondevik, S., Elverhøi, A., Fjeldskaar, W., Mangerud, J., Salvigsen, O., Siegert, M. J., Svendsen, J.-I., & Vorren, T. O. (1998). THE LAST GLACIAL MAXIMUM OF SVALBARD AND THE BARENTS SEA AREA: ICE SHEET EXTENT AND CONFIGURATION. Quaternary Science Reviews, 17(1), 43–75. https://doi.org/10.1016/S0277-3791(97)00066-8
  29. Landvik, J. Y., Ingólfsson, Ó., Mienert, J., Lehman, S. J., Solheim, A., Elverhøi, A., & Ottesen, D. (2005). Rethinking Late Weichselian ice-sheet dynamics in coastal NW Svalbard. Boreas, 34(1), 7–24. https://doi.org/10.1111/j.1502-3885.2005.tb01001.x
  30. Mangerud, J., Dokken, T., Hebbeln, D., Heggen, B., Ingólfsson, Ó., Landvik, J. Y., Mejdahl, V., Svendsen, J. I., & Vorren, T. O. (1998). FLUCTUATIONS OF THE SVALBARD–BARENTS SEA ICE SHEET DURING THE LAST 150 000 YEARS. Quaternary Science Reviews, 17(1), 11–42. https://doi.org/10.1016/S0277-3791(97)00069-3
  31. Mudelsee, M., & Raymo, M. E. (2005). Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography, 20(4). https://doi.org/10.1029/2005PA001153
  32. Ostanin, I., Anka, Z., di Primio, R., & Bernal, A. (2013). Hydrocarbon plumbing systems above the Snøhvit gas field: Structural control and implications for thermogenic methane leakage in the Hammerfest Basin, SW Barents Sea. Marine and Petroleum Geology, 43, 127–146. https://doi.org/10.1016/j.marpetgeo.2013.02.012
  33. Ottesen, D., Dowdeswell, J. A., & Rise, L. (2005). Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: The 2500-km-long Norwegian-Svalbard margin (57°–80°N). GSA Bulletin, 117(7–8), 1033–1050. https://doi.org/10.1130/B25577.1
  34. Piotrowski, J. A. (1994). Tunnel-valley formation in northwest Germany—Geology, mechanisms of formation and subglacial bed conditions for the Bornhöved tunnel valley. Sedimentary Geology, 89(1), 107–141. https://doi.org/10.1016/0037-0738(94)90086-8
  35. Polyak, L., Forman, S. L., Herlihy, F. A., Ivanov, G., & Krinitsky, P. (1997). Late Weichselian deglacial history of the Svyataya (Saint) Anna Trough, northern Kara Sea, Arctic Russia. Marine Geology, 143(1), 169–188. https://doi.org/10.1016/S0025-3227(97)00096-0
  36. Rasmussen, T. L., Thomsen, E., Ślubowska, M. A., Jessen, S., Solheim, A., & Koç, N. (2007). Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP. Quaternary Research, 67(1), 100–114. https://doi.org/10.1016/j.yqres.2006.07.002
  37. Rüther, D. C., Mattingsdal, R., Andreassen, K., Forwick, M., & Husum, K. (2011). Seismic architecture and sedimentology of a major grounding zone system deposited by the Bjørnøyrenna Ice Stream during Late Weichselian deglaciation. Quaternary Science Reviews, 30(19), 2776–2792. https://doi.org/10.1016/j.quascirev.2011.06.011
  38. Sættem, J., Bugge, T., Fanavoll, S., Goll, R. M., Mørk, A., Mørk, M. B. E., Smelror, M., & Verdenius, J. G. (1994). Cenozoic margin development and erosion of the Barents Sea: Core evidence from southwest of Bjørnøya. Marine Geology, 118(3), 257–281. https://doi.org/10.1016/0025-3227(94)90087-6
  39. Sættem, J., Poole, D. A. R., Ellingsen, L., & Sejrup, H. P. (1992). Glacial geology of outer Bjørnøyrenna, southwestern Barents Sea. Marine Geology, 103(1), 15–51. https://doi.org/10.1016/0025-3227(92)90007-5
  40. Ślubowska-Woldengen, M., Koç, N., Rasmussen, T. L., Klitgaard-Kristensen, D., Hald, M., & Jennings, A. E. (2008). Time-slice reconstructions of ocean circulation changes on the continental shelf in the Nordic and Barents Seas during the last 16,000 cal yr B.P. Quaternary Science Reviews, 27(15), 1476–1492. https://doi.org/10.1016/j.quascirev.2008.04.015
  41. Solheim, A., & Elverhøi, A. (1993). Gas-related sea floor craters in the Barents Sea. Geo-Marine Letters, 13(4), 235–243. https://doi.org/10.1007/BF01207753
  42. Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., … Stein, R. (2004). Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews, 23(11), 1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008
  43. Vadakkepuliyambatta, S., Bünz, S., Mienert, J., & Chand, S. (2013). Distribution of subsurface fluid-flow systems in the SW Barents Sea. Marine and Petroleum Geology, 43, 208–221. https://doi.org/10.1016/j.marpetgeo.2013.02.007
  44. Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M., Pälike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A., Lanoisellé, M., James, R. H., Hühnerbach, V., Green, D., Fisher, R. E., Crocker, A. J., Chabert, A., Bolton, C., Beszczynska-Möller, A., Berndt, C., & Aquilina, A. (2009). Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters, 36(15). https://doi.org/10.1029/2009GL039191
  45. Winsborrow, M. C. M., Andreassen, K., Corner, G. D., & Laberg, J. S. (2010). Deglaciation of a marine-based ice sheet: Late Weichselian palaeo-ice dynamics and retreat in the southern Barents Sea reconstructed from onshore and offshore glacial geomorphology. Quaternary Science Reviews, 29(3), 424–442. https://doi.org/10.1016/j.quascirev.2009.10.001